Lipschitz minimization and the Goldstein modulus

Goldstein’s 1977 idealized iteration for minimizing a Lipschitz objective fixes a distance – the step size – and relies on a certain approximate subgradient. That “Goldstein subgradient” is the shortest convex combination of objective gradients at points within that distance of the current iterate. A recent implementable Goldstein-style algorithm allows a remarkable complexity analysis (Zhang … Read more

Convex optimization on CAT(0) cubical complexes

We consider geodesically convex optimization problems involving distances to a finite set of points A in a CAT(0) cubical complex. Examples include the minimum enclosing ball problem, the weighted mean and median problems, and the feasibility and projection problems for intersecting balls with centers in A. We propose a decomposition approach relying on standard Euclidean … Read more

A graph-structured distance for mixed-variable domains with meta variables

Heterogeneous datasets emerge in various machine learning and optimization applications that feature different input sources, types or formats. Most models or methods do not natively tackle heterogeneity. Hence, such datasets are often partitioned into smaller and simpler ones, which may limit the generalizability or performance, especially if data is limited. The first main contribution of … Read more

Subgradient Convergence Implies Subdifferential Convergence on Weakly Convex Functions: With Uniform Rates Guarantees

In nonsmooth, nonconvex stochastic optimization, understanding the uniform convergence of subdifferential mappings is crucial for analyzing stationary points of sample average approximations of risk as they approach the population risk. Yet, characterizing this convergence remains a fundamental challenge. This work introduces a novel perspective by connecting the uniform convergence of subdifferential mappings to that of subgradient … Read more

Optimal Sports League Realignment

We consider approaches for optimally organizing competitive sports leagues in light of competitive and logistical considerations. A common objective is to assign teams to divisions so that intradivisional travel is minimized. We present a bilinear programming formulation based on k-way equipartitioning, and show how this formulation can be extended to account for additional constraints and … Read more

On the global convergence of a general class of augmented Lagrangian methods

In [E. G. Birgin, R. Castillo and J. M. Martínez, Computational Optimization and Applications 31, pp. 31-55, 2005], a general class of safeguarded augmented Lagrangian methods is introduced which includes a large number of different methods from the literature. Besides a numerical comparison including 65 different methods, primal-dual global convergence to a KKT point is … Read more

Mixed-Integer Linear Optimization for Cardinality-Constrained Random Forests

Random forests are among the most famous algorithms for solving classification problems, in particular for large-scale data sets. Considering a set of labeled points and several decision trees, the method takes the majority vote to classify a new given point. In some scenarios, however, labels are only accessible for a proper subset of the given … Read more

Exploiting Sign Symmetries in Minimizing Sums of Rational Functions

This paper is devoted to the problem of minimizing a sum of rational functions over a basic semialgebraic set. We provide a hierarchy of sum of squares (SOS) relaxations that is dual to the generalized moment problem approach due to Bugarin, Henrion, and Lasserre. The investigation of the dual SOS aspect offers two benefits: 1) … Read more

Approaches to iterative algorithms for solving nonlinear equations with an application in tomographic absorption spectroscopy

In this paper we propose an approach for solving systems of nonlinear equations without computing function derivatives. Motivated by the application area of tomographic absorption spectroscopy, which is a highly-nonlinear problem with variables coupling, we consider a situation where straightforward translation to a fixed point problem is not possible because the operators that represent the … Read more