Approximate Submodularity and Its Implications in Discrete Optimization

Submodularity, a discrete analog of convexity, is a key property in discrete optimization that features in the construction of valid inequalities and analysis of the greedy algorithm. In this paper, we broaden the approximate submodularity literature, which so far has largely focused on variants of greedy algorithms and iterative approaches. We define metrics that quantify … Read more

Combination Chemotherapy Optimization

Chemotherapy is one of the primary modalities of cancer treatment. Chemotherapy drug administration is a complex problem that often requires expensive clinical trials to evaluate potential regimens. One way to alleviate this burden and better inform future trials is to build reliable models for drug administration. Previous chemotherapy optimization models have mainly relied on optimal … Read more

Objective Selection for Cancer Treatment: An Inverse Optimization Approach

In radiation therapy treatment-plan optimization, selecting a set of clinical objectives that are tractable and parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error based on the treatment planner’s subjective assessment, which often makes the planning process inefficient and inconsistent. We develop the objective selection problem … Read more

Relating Single-Scenario Facets to the Convex Hull of the Extensive Form of a Stochastic Single-Node Flow Polytope

Stochastic mixed-integer programs (SMIPs) are a widely-used modeling paradigm for sequential decision making under uncertainty. One popular solution approach to solving SMIPs is to solve the so-called “extensive form” directly as a large-scale (deterministic) mixed-integer program. In this work, we consider the question of when a facet-defining inequality for the convex hull of a deterministic, … Read more

Theorems of the Alternative for Conic Integer Programming

Farkas’ Lemma is a foundational result in linear programming, with implications in duality, optimality conditions, and stochastic and bilevel programming. Its generalizations are known as theorems of the alternative. There exist theorems of the alternative for integer programming and conic programming. We present theorems of the alternative for conic integer programming. We provide a nested … Read more

The Gap Function: Evaluating Integer Programming Models over Multiple Right-hand Sides

For an integer programming model with fixed data, the linear programming relaxation gap is considered one of the most important measures of model quality. There is no consensus, however, on appropriate measures of model quality that account for data variation. In particular, when the right-hand side is not known exactly, one must assess a model … Read more

Solving Stochastic and Bilevel Mixed-Integer Programs via a Generalized Value Function

We introduce a generalized value function of a mixed-integer program, which is simultaneously parameterized by its objective and right-hand side. We describe its fundamental properties, which we exploit through three algorithms to calculate it. We then show how this generalized value function can be used to reformulate two classes of mixed-integer optimization problems: two-stage stochastic … Read more

Totally Unimodular Multistage Stochastic Programs

We consider totally unimodular multistage stochastic programs, that is, multistage stochastic programs whose extensive-form constraint matrices are totally unimodular. We establish several sufficient conditions and identify examples that have arisen in the literature. CitationRuichen (Richard) Sun, Oleg V. Shylo, Andrew J. Schaefer, Totally unimodular multistage stochastic programs, Operations Research Letters, Volume 43, Issue 1, January … Read more

Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs

Multistage stochastic mixed-integer programming is a powerful modeling paradigm appropriate for many problems involving a sequence of discrete decisions under uncertainty; however, they are difficult to solve without exploiting special structures. We present scenario-tree decomposition to establish bounds for unstructured multistage stochastic mixed-integer programs. Our method decomposes the scenario tree into a number of smaller … Read more

Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides

We consider two-stage quadratic integer programs with stochastic right-hand sides, and present an equivalent reformulation using value functions. We fi rst derive some basic properties of value functions of quadratic integer programs. We then propose a two-phase solution approach. The first phase constructs the value functions of quadratic integer programs in both stages. The second phase … Read more