Constraint propagation on quadratic constraints

This paper considers constraint propagation methods for continuous constraint satisfaction problems consisting of linear and quadratic constraints. All methods can be applied after suitable preprocessing to arbitrary algebraic constraints. The basic new techniques consist in eliminating bilinear entries from a quadratic constraint, and solving the resulting separable quadratic constraints by means of a sequence of … Read more

Rigorous enclosures of ellipsoids and directed Cholesky factorizations

This paper discusses the rigorous enclosure of an ellipsoid by a rectangular box, its interval hull, providing a convenient preprocessing step for constrained optimization problems. A quadratic inequality constraint with a positive definite Hessian defines an ellipsoid. The Cholesky factorization can be used to transform a strictly convex quadratic constraint into a norm inequality, for … Read more

A scaling algorithm for polynomial constraint satisfaction problems

Good scaling is an essential requirement for the good behavior of many numerical algorithms. In particular, for problems involving multivariate polynomials, a change of scale in one or more variable may have drastic effects on the robustness of subsequent calculations. This paper surveys scaling algorithms for systems of polynomials from the literature, and discusses some … Read more

Nonserial dynamic programming and local decomposition algorithms in discrete programming

One of perspective ways to exploit sparsity in the dependency graph of an optimization problem as J.N. Hooker stressed is nonserial dynamic programming (NSDP) which allows to compute solution in stages, each of them uses results from previous stages. The class of discrete optimization problems with the block-tree-structure matrix of constraints is considered. Nonserial dynamic … Read more

Transposition theorems and qualification-free optimality conditions

New theorems of the alternative for polynomial constraints (based on the Positivstellensatz from real algebraic geometry) and for linear constraints (generalizing the transposition theorems of Motzkin and Tucker) are proved. Based on these, two Karush-John optimality conditions — holding without any constraint qualification — are proved for single- or multi-objective constrained optimization problems. The first … Read more

A comparison of complete global optimization solvers

Results are reported of testing a number of existing state of the art solvers for global constrained optimization and constraint satisfaction on a set of over 1000 test problems in up to 1000 variables. Citation submitted to the special issue on Global Optimization of Math. Programming Article Download View A comparison of complete global optimization … Read more

Complete Search in Continuous Global Optimization and Constraint Satisfaction

This survey covers the state of the art of techniques for solving general purpose constrained global optimization problems and continuous constraint satisfaction problems, with emphasis on complete techniques that provably find all solutions (if there are finitely many). The core of the material is presented in sufficient detail that the survey may serve as a … Read more

Sharpening the Karush-John optimality conditions

A refined version of the Karush-John first order optimality conditions is presented which reduces the number of constraints for which a constraint qualification is needed. This version is a generalization both of the Karush-John conditions and of the first order optimality conditions for concave constraints. Article Download View Sharpening the Karush-John optimality conditions

A new exact penalty function

For constrained smooth or nonsmooth optimization problems, new continuously differentiable penalty functions are derived. They are proved exact in the sense that under some nondegeneracy assumption, local optimizers of a nonlinear program are precisely the optimizers of the associated penalty function. This is achieved by augmenting the dimension of the program by a variable that … Read more

Safe bounds in linear and mixed-integer programming

Current mixed-integer linear programming solvers are based on linear programming routines that use floating point arithmetic. Occasionally, this leads to wrong solutions, even for problems where all coefficients and all solution components are small integers. It is shown how, using directed rounding and interval arithmetic, cheap pre- and postprocessing of the linear programs arising in … Read more