A Survey on Bilevel Optimization Under Uncertainty

Bilevel optimization is a very active field of applied mathematics. The main reason is that bilevel optimization problems can serve as a powerful tool for modeling hierarchical decision making processes. This ability, however, also makes the resulting problems challenging to solve—both in theory and practice. Fortunately, there have been significant algorithmic advances in the field … Read more

The impact of passive social media users in (competitive) influence maximization

A frequently studied problem in the context of digital marketing for online social networks is the influence maximization problem that seeks for an initial seed set of influencers that trigger an information propagation cascade (in terms of message-forwarding) of expected maximum impact. The studied problems typically neglect that the probability that individuals only view content … Read more

Freight-on-Transit for urban last-mile deliveries: A Strategic Planning Approach

We study a delivery strategy for last-mile deliveries in urban areas which combines freight transportation with mass mobility systems with the goal of creating synergies contrasting negative externalities caused by transportation. The idea is to use the residual capacity on public transport means for moving freights within the city. In particular, the system is such … Read more

Exact Methods for Discrete Γ-Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem

Developing solution methods for mixed-integer bilevel problems is known to be a challenging task – even if all parameters of the problem are exactly known. Many real-world applications of bilevel optimization, however, involve data uncertainty due to some kind of bounded rationality. We study mixed-integer min-max problems with a follower who faces uncertainties regarding the … Read more

Heuristics for Home Appliances Scheduling Problems With Energy Consumption Bounds

Many existing papers on the topic of smart grids work on scheduling of appliances considering an unlimited energy supply. However, the size of the power grid necessary to operate on periods of peak demand of the day would be large, and that would not be exploited during most of the day. Because of this, electricity … Read more

A tailored Benders decomposition approach for last-mile delivery with autonomous robots

This work addresses an operational problem of a logistics service provider that consists of finding an optimal route for a vehicle carrying customer parcels from a central depot to selected facilities, from where autonomous devices like robots are launched to perform last-mile deliveries. The objective is to minimize a tardiness indicator based on the customer … Read more

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization

Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and … Read more

An Exact Method for Assortment Optimization under the Nested Logit Model

We study the problem of finding an optimal assortment of products maximizing the expected revenue, in which customer preferences are modeled using a Nested Logit choice model. This problem is known to be polynomially solvable in a specific case and NP-hard otherwise, with only approximation algorithms existing in the literature. For the NP-hard cases, we … Read more

A branch-and-cut algorithm for the Edge Interdiction Clique Problem

Given a graph G and an interdiction budget k, the Edge Interdiction Clique Problem (EICP) asks to find a subset of at most k edges to remove from G so that the size of the maximum clique, in the interdicted graph, is minimized. The EICP belongs to the family of interdiction problems with the aim … Read more

Submodular maximization of concave utility functions composed with a set-union operator with applications to maximal covering location problems

We study a family of discrete optimization problems asking for the maximization of the expected value of a concave, strictly increasing, and differentiable function composed with a set-union operator. The expected value is computed with respect to a set of coefficients taking values from a discrete set of scenarios. The function models the utility function … Read more