A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimization

In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The … Read more

Globally Convergent Levenberg-Marquardt Method For Phase Retrieval

In this paper, we consider a nonlinear least squares model for the phase retrieval problem. Since the Hessian matrix may not be positive definite and the Gauss-Newton (GN) matrix is singular at any optimal solution, we propose a modified Levenberg-Marquardt (LM) method, where the Hessian is substituted by a summation of the GN matrix and … Read more

Semi-Smooth Second-order Type Methods for Composite Convex Programs

The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: i) Many well-known operator splitting methods, such as forward-backward splitting (FBS) and Douglas-Rachford splitting (DRS), actually define a possibly semi-smooth and monotone fixed-point mapping; ii) The optimal solutions … Read more

hBcnorm regularization algorithms for optimization over permutation matrices

Optimization problems over permutation matrices appear widely in facility layout, chip design, scheduling, pattern recognition, computer vision, graph matching, etc. Since this problem is NP-hard due to the combinatorial nature of permutation matrices, we relax the variable to be the more tractable doubly stochastic matrices and add an $L_p$-norm ($0 < p < 1$) regularization ... Read more

A proximal gradient method for ensemble density functional theory

The ensemble density functional theory is valuable for simulations of metallic systems due to the absence of a gap in the spectrum of the Hamiltonian matrices. Although the widely used self-consistent field iteration method can be extended to solve the minimization of the total energy functional with respect to orthogonality constraints, there is no theoretical … Read more

A Composite Risk Measure Framework for Decision Making under Uncertainty

In this paper, we present a unified framework for decision making under uncertainty. Our framework is based on the composite of two risk measures, where the inner risk measure accounts for the risk of decision given the exact distribution of uncertain model parameters, and the outer risk measure quantifies the risk that occurs when estimating … Read more

A Parallel Line Search Subspace Correction Method for Composite Convex Optimization

In this paper, we investigate a parallel subspace correction framework for composite convex optimization. The variables are first divided into a few blocks based on certain rules. At each iteration, the algorithms solve a suitable subproblem on each block simultaneously, construct a search direction by combining their solutions on all blocks, then identify a new … Read more

An Efficient Gauss-Newton Algorithm for Symmetric Low-Rank Product Matrix Approximations

We derive and study a Gauss-Newton method for computing a symmetric low-rank product that is the closest to a given symmetric matrix in Frobenius norm. Our Gauss-Newton method, which has a particularly simple form, shares the same order of iteration-complexity as a gradient method when the size of desired eigenspace is small, but can be … Read more

Trace-Penalty Minimization for Large-scale Eigenspace Computation

The Rayleigh-Ritz (RR) procedure, including orthogonalization, constitutes a major bottleneck in computing relatively high dimensional eigenspaces of large sparse matrices. Although operations involved in RR steps can be parallelized to a certain level, their parallel scalability, which is limited by some inherent sequential steps, is lower than dense matrix-matrix multiplications. The primary motivation of this … Read more

Asset Allocation under the Basel Accord Risk Measures

Financial institutions are currently required to meet more stringent capital requirements than they were before the recent financial crisis; in particular, the capital requirement for a large bank’s trading book under the Basel 2.5 Accord more than doubles that under the Basel II Accord. The significant increase in capital requirements renders it necessary for banks … Read more