Short Sales in Log-Robust Portfolio Management

This paper extends the Log-robust portfolio management approach to the case with short sales, i.e., the case where the manager can sell shares he does not yet own. We model the continuously compounded rates of return, which have been established in the literature as the true drivers of uncertainty, as uncertain parameters belonging to polyhedral … Read more

Project Scheduling

Nowadays, construction projects grow in complexity and size. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. Project scheduling consists of determining the starting and finishing times of the activities in a project. These activities are linked by precedence relations and their processing requires one or more resources. … Read more

Sensitivity analysis of the optimal solutions to Huff-type competitive location and design problems

A chain wants to set up a single new facility in a planar market where similar facilities of competitors, and possibly of its own chain, are already present. Fixed demand points split their demand probabilistically over all facilities in the market proportionally with their attraction to each facility, determined by the different perceived qualities of … Read more

Optimization of Real Asset Portfolio using a Coherent Risk Measure: Application to Oil and Energy Industries

In many industries, investment is part of the most important planning decisions. In past decades, mathematical programming models have been widely used in capacity planning and facility location to support investment decisions. Such initial techniques evolved to the use of enterprise portfolio management, very common in the energy industry. Increasing concern on risk made of … Read more

Incremental-like Bundle Methods with Application to Energy Planning

An important field of application of non-smooth optimization refers to decomposition of large-scale or complex problems by Lagrangian duality. In this setting, the dual problem consists in maximizing a concave non-smooth function that is defined as the sum of sub-functions. The evaluation of each sub-function requires solving a specific optimization sub-problem, with specific computational complexity. … Read more

Minimizing the sum of weighted completion times in a concurrent open shop

We study minimizing the sum of weighted completion times in a concurrent open shop. We give a primal-dual 2-approximation algorithm for this problem. We also show that several natural linear programming relaxations for this problem have an integrality gap of 2. Finally, we show that this problem is inapproximable within a factor strictly less than … Read more

Dynamic Evolution for Risk-Neutral Densities

Option price data is often used to infer risk-neutral densities for future prices of an underlying asset. Given the prices of a set of options on the same underlying asset with different strikes and maturities, we propose a nonparametric approach for estimating the evolution of the risk-neutral density in time. Our method uses bicubic splines … Read more

A Multistage Stochastic Programming Approach to Open Pit Mine Production Scheduling with Uncertain Geology

The Open Pit Mine Production Scheduling Problem (OPMPSP) studied in recent years is usually based on a single geological estimate of material to be excavated and processed over a number of decades. However techniques have now been developed to generate multiple stochastic geological estimates that more accurately describe the uncertain geology. While some attempts have … Read more

Comparison and robustification of Bayes and Black-Litterman models

For determining an optimal portfolio allocation, parameters representing the underlying market — characterized by expected asset returns and the covariance matrix — are needed. Traditionally, these point estimates for the parameters are obtained from historical data samples, but as experts often have strong opinions about (some of) these values, approaches to combine sample information and … Read more

Modeling and Solving Location Routing and Scheduling Problems

This paper studies location routing and scheduling problems, a class of problems in which the decisions of facility location, vehicle routing, and route assignment are optimized simultaneously. For a version with capacity and time restrictions, two formulations are presented, one graph-based and one set-partitioning-based. For the set-partitioning-based formulation, valid inequalities are identified and their effectiveness … Read more