Rounding in Mixed-Integer Model Predictive Control

We derive practical stability results for finite-control set and mixed-integer model predictive control. Thereby, we investigate the evolution of the closed-loop system in the presence of control rounding and draw conclusions about optimality. The paper integrates integral approximation strategies with the inherent robustness properties of conventional model predictive control with stabilizing terminal conditions. We propose … Read more

Climate-Resilient Nodal Power System Expansion Planning for a Realistic California Test Case

Climate change is increasingly impacting power system operations, not only through more frequent extreme weather events but also through shifts in routine weather patterns. Factors such as increased temperatures, droughts, changing wind patterns, and solar irradiance shifts can impact both power system production and transmission and electric load. The current power system was not designed … Read more

Obscured by terminology: Hidden parallels in direct methods for open-loop optimal control

Active research on optimal control methods comprises the developments of research groups from various fields, including control, mathematics, and process systems engineering. Although there is a consensus on the classification of the main solution methods, different terms are often used for the same method. For example, solving optimal control problems with control discretization and embedded … Read more

Optimal Experimental Design with Routing Constraints

Data collection in application domains like agriculture and environmental science requires the deployment of sensors in large remote areas. These use cases challenge the traditional optimal experimental design (OED) formulation from statistics by their scale as well as the presence of complex operational constraints, such as that data is collected along the trajectory of a … Read more

Risk-aware Logic-based Benders Decomposition for a Location-Allocation-Pricing Problem with Stochastic Price-Sensitive Demands

We consider a capacitated location-allocation-pricing problem in a single-commodity supply chain with stochastic price-sensitive demands, where the location, allocation and pricing decisions are made simultaneously. Under a general risk measure representing an arbitrary risk tolerance policy, the problem is modeled as a two-stage stochastic mixed-integer program with a translation-invariant monotone risk measure. To solve the … Read more

Mean and variance estimation complexity in arbitrary distributions via Wasserstein minimization

Parameter estimation is a fundamental challenge in machine learning, crucial for tasks such as neural network weight fitting and Bayesian inference. This paper focuses on the complexity of estimating translation μ∈R^l and shrinkage σ∈R++ parameters for a distribution of the form (1/sigma^l) f_0((x−μ)/σ), where f_0 is a known density in R^l given n samples. We … Read more

A necessary condition for the guarantee of the superiorization method

We study a method that involves principally convex feasibility-seeking and makes secondary efforts of objective function value reduction. This is the well-known superiorization method (SM), where the iterates of an asymptotically convergent iterative feasibility-seeking algorithm are perturbed by objective function nonascent steps. We investigate the question under what conditions a sequence generated by an SM … Read more

Risk-Averse Antibiotics Time Machine Problem

Antibiotic resistance, which is a serious healthcare issue, emerges due to uncontrolled and repeated antibiotic use that causes bacteria to mutate and develop resistance to antibiotics. The Antibiotics Time Machine Problem aims to come up with treatment plans that maximize the probability of reversing these mutations. Motivated by the severity of the problem, we develop … Read more

Computing Counterfactual Explanations for Linear Optimization: A New Class of Bilevel Models and a Tailored Penalty Alternating Direction Method

Explainable artificial intelligence is one of the most important trends in modern machine-learning research. The idea is to explain the outcome of a model by presenting a certain change in the input of the model so that the outcome changes significantly. In this paper, we study this question for linear optimization problems as an automated … Read more

Inexact FISTA-like Methods with Adaptive Backtracking

Accelerated proximal gradient methods have become a useful tool in large-scale convex optimization, specially for variational regularization with non-smooth priors. Prevailing convergence analysis considers that users can perform the proximal and the gradient steps exactly. Still, in some practical applications, the proximal or the gradient steps must be computed inexactly, which can harm convergence speed … Read more