Potential-Based Flows – An Overview

Potential-based flows provide an algebraic way to model static physical flows in networks, for example, in gas, water, and lossless DC power networks. The flow on an arc in the network depends on the difference of the potentials at its end-nodes, possibly in a nonlinear way. Potential-based flows have several nice properties like uniqueness and … Read more

A Marginal Reliability Impact Based Accreditation Framework for Capacity Markets

This paper presents a Marginal Reliability Impact (MRI) based resource accreditation framework in the context of capacity market design. Under this framework, a resource is accredited based on its marginal impact on system reliability, thus aligning the resource’s capacity market value with its reliability contribution. A salient feature of the MRI-based accreditation is that each … Read more

Machine Learning–Enhanced Column Generation for Large-Scale Capacity Planning Problems

Capacity Planning problems are a class of optimization problems used in diverse industries to improve resource allocation and make investment decisions. Solving real-world instances of these problems typically requires significant computational effort. To tackle this, we propose machine-learning-aided column generation methods for solving large-scale capacity planning problems. Our goal is to accelerate column generation by … Read more

New Location Science Models with Applications to UAV-Based Disaster Relief

Natural and human-made disasters can cause severe devastation and claim thousands of lives worldwide. Therefore, developing efficient methods for disaster response and management is a critical task for relief teams. One of the most essential components of effective response is the rapid collection of information about affected areas, damages, and victims. More data translates into … Read more

A Taxonomy of Multi-Objective Alignment Techniques for Large Language Models

Aligning large language models (LLMs) with human preferences has evolved from single-objective reward maximization to sophisticated multi-objective optimization. Real-world deployment requires balancing competing objectiveshelpfulness, harmlessness, honesty, instruction-following, and task-specic capabilitiesthat often conict. This survey provides a systematic taxonomy of multi-objective alignment techniques, organizing the rapidly growing literature into four categories: (1) Reward Decomposition approaches that … Read more

Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations

We study Sparse Multiple Kernel Learning (SMKL), which is the problem of selecting a sparse convex combination of prespecified kernels for support vector binary classification. Unlike prevailing \(\ell_1\)‐regularized approaches that approximate a sparsifying penalty, we formulate the problem by imposing an explicit cardinality constraint on the kernel weights and add an \(\ell_2\) penalty for robustness. … Read more

An Optimal Solution is Not Enough: Alternative Solutions and Optimal Power Systems

Power systems modeling and planning has long leveraged mathematical programming for its ability to provide optimality and feasibility guarantees. One feature that has been recognized in the optimization literature since the 1970s is the existence and meaning of multiple exact optimal and near-optimal solutions, which we call alternative solutions. In power systems modeling, the use … Read more

An alternating optimization approach for robust optimal control in chromatography

Chromatographic separation plays a vital role in various areas, as this technique can deliver high-quality products both in lab- and industrial-scale processes. Economical and also ecological benefits can be expected when optimizing such processes with mathematical methods. However, even small perturbations in the operating conditions can result in significantly altered results, which may lead to … Read more

Stronger cuts for Benders’ decomposition for stochastic Unit Commitment Problems based on interval variables

The Stochastic Unit Commitment (SUC) problem models the scheduling of power generation units under uncertainty, typically using a two-stage stochastic program with integer first-stage and continuous second-stage variables. We propose a new Benders decomposition approach that leverages an extended formulation based on interval variables, enabling decomposition by both unit and time interval under mild technical … Read more