Single-neuron convexifications for binarized neural networks

Binarized neural networks are an important class of neural network in deep learning due to their computational efficiency. This paper contributes towards a better understanding of the structure of binarized neural networks, specifically, ideal convex representations of the activation functions used. We describe the convex hull of the graph of the signum activation function associated … Read more

Retail Store Layout Optimization for Maximum Product Visibility

It is well-established that increased product visibility to shoppers leads to higher sales for retailers. In this study, we propose an optimization methodology which assigns product categories and subcategories to store locations and sublocations to maximize the overall visibility of products to shoppers. The methodology is hierarchically developed to meet strategic and tactical layout planning … Read more

Sums of Separable and Quadratic Polynomials

We study separable plus quadratic (SPQ) polynomials, i.e., polynomials that are the sum of univariate polynomials in different variables and a quadratic polynomial. Motivated by the fact that nonnegative separable and nonnegative quadratic polynomials are sums of squares, we study whether nonnegative SPQ polynomials are (i) the sum of a nonnegative separable and a nonnegative … Read more

Beyond Symmetry: Best Submatrix Selection for the Sparse Truncated SVD

Truncated singular value decomposition (SVD), also known as the best low-rank matrix approximation, has been successfully applied to many domains such as biology, healthcare, and others, where high-dimensional datasets are prevalent. To enhance the interpretability of the truncated SVD, sparse SVD (SSVD) is introduced to select a few rows and columns of the original matrix … Read more

Directional TGV-based image restoration under Poisson noise

We are interested in the restoration of noisy and blurry images where the texture mainly follows a single direction (i.e., directional images). Problems of this type arise, for example, in microscopy or computed tomography for carbon or glass fibres. In order to deal with these problems, the Directional Total Generalized Variation (DTGV) was developed by … Read more

A Multiobjective Approach for Sector Duration Optimization in Stereotactic Radiosurgery Treatment Planning

Sector duration optimization (SDO) is a problem arising in treatment planning for stereotactic radiosurgery on Gamma Knife. Given a set of isocenter locations, SDO aims to select collimator size configurations and irradiation times thereof such that target tissues receive prescribed doses in a reasonable amount of treatment time, while healthy tissues nearby are spared. We … Read more

A Unifying Framework for Sparsity Constrained Optimization

In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then … Read more

Branch-and-bound Algorithm for Optimal Sparse Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a family of multivariate statistical methods for extracting mutual information contained in multiple datasets. To improve the interpretability of CCA, here we focus on the mixed-integer optimization (MIO) approach to sparse estimation. This approach was first proposed for sparse linear regression in the 1970s, but it has recently received renewed … Read more

Market Integration of Behind-the-Meter Residential Energy Storage

A new business opportunity beckons with the emergence of prosumers. This article proposes an innovative business model to harness the potential of aggregating behind-the-meter residential storage in which the aggregator compensates participants for using their storage system on an on-demand basis. A bilevel optimization model is developed to evaluate the potential of this proposed business … Read more

Penetration depth between two convex polyhedra: An efficient global optimization approach

During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, … Read more