Market Integration of Behind-the-Meter Residential Energy Storage

A new business opportunity beckons with the emergence of prosumers. This article proposes an innovative business model to harness the potential of aggregating behind-the-meter residential storage in which the aggregator compensates participants for using their storage system on an on-demand basis. A bilevel optimization model is developed to evaluate the potential of this proposed business … Read more

Penetration depth between two convex polyhedra: An efficient global optimization approach

During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, … Read more

Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting

Forecasting and decision-making are generally modeled as two sequential steps with no feedback, following an open-loop approach. In this paper, we present application-driven learning, a new closed-loop framework in which the processes of forecasting and decision-making are merged and co-optimized through a bilevel optimization problem. We present our methodology in a general format and prove … Read more

Sequential Competitive Facility Location: Exact and Approximate Algorithms

We study a competitive facility location problem (CFLP), where two firms sequentially open new facilities within their budgets, in order to maximize their market shares of demand that follows a probabilistic choice model. This process is a Stackelberg game and admits a bilevel mixed-integer nonlinear program (MINLP) formulation. We derive an equivalent, single-level MINLP reformulation … Read more

A Penalty-free Infeasible Approach for a Class of Nonsmooth Optimization Problems over the Stiefel Manifold

Transforming into an exact penalty function model with convex compact constraints yields efficient infeasible approaches for optimization problems with orthogonality constraints. For smooth and L21-norm regularized cases, these infeasible approaches adopt simple and orthonormalization-free updating schemes and show high efficiency in some numerical experiments. However, to avoid orthonormalization while enforcing the feasibility of the final … Read more

Switching cost aware rounding for relaxations of mixed-integer optimal control problems: the two-dimensional case

This article is concerned with a recently proposed switching cost aware rounding (SCARP) strategy in the combinatorial integral decomposition for mixed-integer optimal control problems (MIOCPs). We consider the case of a control variable that is discrete-valued and distributed on a two-dimensional domain. While the theoretical results from the one-dimensional case directly apply to the multidimensional … Read more

Sparse Approximations with Interior Point Methods

Large-scale optimization problems that seek sparse solutions have become ubiquitous. They are routinely solved with various specialized first-order methods. Although such methods are often fast, they usually struggle with not-so-well conditioned problems. In this paper, specialized variants of an interior point-proximal method of multipliers are proposed and analyzed for problems of this class. Computational experience … Read more

A General Framework for Optimal Control of Fractional Nonlinear Delay Systems by Wavelets

An iterative procedure to find the optimal solutions of general fractional nonlinear delay systems with quadraticperformance indices is introduced. The derivatives of state equations are understood in the Caputo sense. By presenting and applying a general framework, we use the Chebyshev wavelet method developed for fractional linear optimal control to convert fractional nonlinear optimal control … Read more

Path Planning and Network Optimization for UAV Swarms for Multi-Target Tracking

This paper focuses on the development of decentralized collaborative sensing and sensor resource allocation algorithms where the sensors are located on-board autonomous unmanned aerial vehicles. We develop these algorithms in the context of single-target and multi-target tracking applications, where the objective is to maximize the tracking performance as measured by the mean-squared error between the … Read more

Robust Optimization in Nanoparticle Technology: A Proof of Principle by Quantum Dot Growth in a Residence Time Reactor

Knowledge-based determination of the best-possible experimental setups for nanoparticle design is highly challenging. Additionally, such processes are accompanied by noticeable uncertainties. Therefore, protection against these uncertainties is needed. Robust optimization helps determining such best possible processes. The latter guarantees quality requirements regardless of how the uncertainties, e.g. with regard to variations in raw materials, heat … Read more