Distance geometry and data science

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its … Read more

An algorithm for optimization with disjoint linear constraints and its application for predicting rain

A specialized algorithm for quadratic optimization (QO, or, formerly, QP) with disjoint linear constraints is presented. In the considered class of problems, a subset of variables are subject to linear equality constraints, while variables in a different subset are constrained to remain in a convex set. The proposed algorithm exploits the structure by combining steps … Read more

Derivative-Free Superiorization: Principle and Algorithm

The superiorization methodology is intended to work with input data of constrained minimization problems, that is, a target function and a set of constraints. However, it is based on an antipodal way of thinking to what leads to constrained minimization methods. Instead of adapting unconstrained minimization algorithms to handling constraints, it adapts feasibility-seeking algorithms to … Read more

Exact solution of the donor-limited nearest neighbor hot deck imputation problem

Data quality in population surveys suffers from missing responses. We use combinatorial optimization to create a complete and coherent data set. The methods are based on the widespread nearest neighbor hot deck imputation method that replaces the missing values with observed values from a close unit, the so-called donor. As a repeated use of donors … Read more

Scheduling Post-disaster Repairs in Electricity Distribution Networks with Uncertain Repair Times

Natural disasters, such as hurricanes, large wind and ice storms, typically require the repair of a large number of components in electricity distribution networks. Since power cannot be restored before the completion of repairs, optimally scheduling the available crews to minimize the cumulative duration of the customer interruptions reduces the harm done to the affected … Read more

Computing Estimators of Dantzig Selector type via Column and Constraint Generation

We consider a class of linear-programming based estimators in reconstructing a sparse signal from linear measurements. Specific formulations of the reconstruction problem considered here include Dantzig selector, basis pursuit (for the case in which the measurements contain no errors), and the fused Dantzig selector (for the case in which the underlying signal is piecewise constant). … Read more

A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics

Historically, scalability has been a major challenge to the successful application of semidefinite programming in fields such as machine learning, control, and robotics. In this paper, we survey recent approaches for addressing this challenge including (i) approaches for exploiting structure (e.g., sparsity and symmetry) in a problem, (ii) approaches that produce low-rank approximate solutions to … Read more

Competing Objective Optimization in Networked Swarm Systems

In this paper, we develop a decentralized collaborative sensing algorithm where the sensors are located on-board autonomous unmanned aerial vehicles. We develop this algorithm in the context of a target tracking application, where the objective is to maximize the tracking performance measured by the meansquared error between the target state estimate and the ground truth. … Read more

Optimal Aggregated Peak Shaving Via Residential Demand Response: A Framework for Retailers

This paper proposes an optimization framework for retailers that are involved in demand response (DR) programs. In a first phase responsive users optimize their own household consumption, characterizing not only their smart home components but also their comfort preferences. Then, the retailer exploits in a second phase this preliminary non-coordinated solution to implement a peak … Read more

Improved Penalty Algorithm for Mixed Integer PDE Constrained Optimization (MIPDECO) Problems

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially … Read more