Multiphase Mixed-Integer Nonlinear Optimal Control of Hybrid Electric Vehicles

This paper considers the problem of computing the non-causal minimum-fuel energy management strategy of a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem arising when optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by … Read more

Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system

We develop a stochastic optimization model for scheduling a hybrid solar-battery storage system. Solar power in excess of the promise can be used to charge the battery, while power short of the promise is met by discharging the battery. We ensure reliable operations by using a joint chance constraint. Models with a few hundred scenarios … Read more

Using interior point solvers for optimizing progressive lens models with spherical coordinates

Designing progressive lenses is a complex problem that has been previously solved by formulating an optimization model based on Cartesian coordinates. In this work a new progressive lens model using spherical coordinates is presented, and interior point solvers are used to solve this new optimization model. Although this results in a highly nonlinear, nonconvex, continuous … Read more

A mixed-integer optimization approach to an exhaustive cross-validated model selection for regression

We consider a linear regression model for which we assume that many of the observed regressors are irrelevant for the prediction. To avoid overfitting, we conduct a variable selection and only include the true predictors for the least square fitting. The best subset selection gained much interest in recent years for addressing this objective. For … Read more

An analysis of noise folding for low-rank matrix recovery

Previous work regarding low-rank matrix recovery has concentrated on the scenarios in which the matrix is noise-free and the measurements are corrupted by noise. However, in practical application, the matrix itself is usually perturbed by random noise preceding to measurement. This paper concisely investigates this scenario and evidences that, for most measurement schemes utilized in … Read more

Trust-region methods for the derivative-free optimization of nonsmooth black-box functions

In this paper we study the minimization of a nonsmooth black-box type function, without assuming any access to derivatives or generalized derivatives and without any knowledge about the analytical origin of the function nonsmoothness. Directional methods have been derived for such problems but to our knowledge no model-based method like a trust-region one has yet … Read more

Integer Programming for Learning Directed Acyclic Graphs from Continuous Data

Learning directed acyclic graphs (DAGs) from data is a challenging task both in theory and in practice, because the number of possible DAGs scales superexponentially with the number of nodes. In this paper, we study the problem of learning an optimal DAG from continuous observational data. We cast this problem in the form of a … Read more

Discrete Optimization Methods for Group Model Selection in Compressed Sensing

In this article we study the problem of signal recovery for group models. More precisely for a given set of groups, each containing a small subset of indices, and for given linear sketches of the true signal vector which is known to be group-sparse in the sense that its support is contained in the union … Read more

An Alternating Manifold Proximal Gradient Method for Sparse PCA and Sparse CCA

Sparse principal component analysis (PCA) and sparse canonical correlation analysis (CCA) are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Since non-smoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve … Read more

Efficient Derivative Evaluation for Rigid-body Dynamics based on Recursive Algorithms subject to Kinematic and Loop Constraints

Simulation, optimization and control of robotic and bio-mechanical systems depend on a mathematical model description, typically a rigid-body system connected by joints, for which efficient algorithms to compute the forward or inverse dynamics exist. Models that e.g.\ include spring-damper systems are subject to both kinematic and loop constraints. Gradient-based optimization and control methods require derivatives … Read more