A Foundational Perspective for Partitional Clustering on Networks

This study presents a theoretical analysis of partitional clustering on networks. Different versions of the problem are studied considering different assignment schemes (hard and soft) and different objective functions. Cluster centers are not restricted to only the set of nodes, it is assumed that centers can also be at the edges of the network. Four … Read more

Superiorization and Perturbation Resilience of Algorithms: A Continuously Updated Bibliography

This document presents a (mostly) chronologically-ordered bibliography of scientific publications on the superiorization methodology and perturbation resilience of algorithms which is compiled and continuously updated by us at: http://math.haifa.ac.il/yair/bib-superiorization-censor.html. Since the beginnings of this topic we try to trace the work that has been published about it since its inception. To the best of our … Read more

Rounding in Mixed-Integer Model Predictive Control

This paper interfaces combinatorial integral approximation strategies with the inherent robustness properties of conventional model predictive control with stabilizing terminal conditions. We deduce practical stability results for finite-control set and mixed-integer model predictive control and investigate the evolution of the closed-loop system in the presence of control rounding to draw conclusions about deviation from optimality. … Read more

Climate-Resilient Nodal Power System Expansion Planning for a Realistic California Test Case

Climate change is increasingly impacting power system operations, not only through more frequent extreme weather events but also through shifts in routine weather patterns. Factors such as increased temperatures, droughts, changing wind patterns, and solar irradiance shifts can impact both power system production and transmission and electric load. The current power system was not designed … Read more

Obscured by terminology: Hidden parallels in direct methods for open-loop optimal control

Active research on optimal control methods comprises the developments of research groups from various fields, including control, mathematics, and process systems engineering. Although there is a consensus on the classification of the main solution methods, different terms are often used for the same method. For example, solving optimal control problems with control discretization and embedded … Read more

Operationalizing Experimental Design: Data Collection for Remote Ocean Monitoring

Problem definition: To collect data on ocean plastic pollution and build more accurate predictive models, we need to manually take high-resolution pictures of the sea surface via floating or flying drones. Operating these vehicles, like many data collection problems in agriculture or environmental science, challenges the traditional optimal experimental design (OED) formulation from statistics by … Read more

Risk-aware Logic-based Benders Decomposition for a Location-Allocation-Pricing Problem with Stochastic Price-Sensitive Demands

We consider a capacitated location-allocation-pricing problem in a single-commodity supply chain with stochastic price-sensitive demands, where the location, allocation and pricing decisions are made simultaneously. Under a general risk measure representing an arbitrary risk tolerance policy, the problem is modeled as a two-stage stochastic mixed-integer program with a translation-invariant monotone risk measure. To solve the … Read more

Mean and variance estimation complexity in arbitrary distributions via Wasserstein minimization

Parameter estimation is a fundamental challenge in machine learning, crucial for tasks such as neural network weight fitting and Bayesian inference. This paper focuses on the complexity of estimating translation μ∈R^l and shrinkage σ∈R++ parameters for a distribution of the form (1/sigma^l) f_0((x−μ)/σ), where f_0 is a known density in R^l given n samples. We … Read more

A necessary condition for the guarantee of the superiorization method

We study a method that involves principally convex feasibility-seeking and makes secondary efforts of objective function value reduction. This is the well-known superiorization method (SM), where the iterates of an asymptotically convergent iterative feasibility-seeking algorithm are perturbed by objective function nonascent steps. We investigate the question under what conditions a sequence generated by an SM … Read more

Risk-Averse Antibiotics Time Machine Problem

Antibiotic resistance, which is a serious healthcare issue, emerges due to uncontrolled and repeated antibiotic use that causes bacteria to mutate and develop resistance to antibiotics. The Antibiotics Time Machine Problem aims to come up with treatment plans that maximize the probability of reversing these mutations. Motivated by the severity of the problem, we develop … Read more