General parameterized proximal point algorithm with applications in the statistical learning

In the literature, there are a few researches for the proximal point algorithm (PPA) with some parameters in the proximal matrix, especially for the multi-objective optimization problems. Introducing some parameters to the PPA will make it more attractive and flexible. By using the unified framework of the classical PPA and constructing a parameterized proximal matrix, … Read more

Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major … Read more

Comparison of IP and CNF Models for Control of Automated Valet Parking Systems

In automated valet parking system, a central computer controls a number of robots which have the capability to move in two directions, under cars, lift a car up, carry it to another parking slot, and drop it. We study the theoretical throughput limitations of these systems: Given a car park layout, an initial configuration of … Read more

Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy

A split feasibility formulation for the inverse problem of intensity-modulated radiation therapy (IMRT) treatment planning with dose-volume constraints (DVCs) included in the planning algorithm is presented. It involves a new type of sparsity constraint that enables the inclusion of a percentage-violation constraint in the model problem and its handling by continuous (as opposed to integer) … Read more

Faster Estimation of High-Dimensional Vine Copulas with Automatic Differentiation

Vine copula is an important tool in modeling dependence structures of continuous-valued random variables. The maximum likelihood estimation (MLE) for vine copulas has long been considered computationally difficult in higher dimensions, even in 10 or 20 dimensions. Current computational practice, including the implementation in the state-of- the-art R package VineCopula, suffers from the bottleneck of … Read more

A dual Newton strategy for scenario decomposition in robust multi-stage MPC

This paper considers the solution of tree-structured Quadratic Programs (QPs) as they may arise in multi- stage Model Predictive Control (MPC). In this context, sampling the uncertainty on prescribed decision points gives rise to different scenarios that are linked to each other via the so-called non-anticipativity constraints. Previous work suggests to dualize these constraints and … Read more

A Parameterized Proximal Point Algorithm for Separable Convex Optimization

In this paper, we develop a Parameterized Proximal Point Algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a worst-case $O(1/t)$ convergence rate, where $t$ is the iteration number. By properly choosing the algorithm parameters, numerical experiments … Read more

A MIQCP formulation for B-spline constraints

This paper presents a mixed-integer quadratically constrained programming (MIQCP) formulation for B-spline constraints. The formulation can be used to obtain an exact MIQCP reformulation of any spline-constrained optimization problem, provided that the polynomial spline functions are continuous. This reformulation allows practitioners to use a general-purpose MIQCP solver, instead of a special-purpose spline solver, when solving … Read more

Geometry of 3D Environments and Sum of Squares Polynomials

Motivated by applications in robotics and computer vision, we study problems related to spatial reasoning of a 3D environment using sublevel sets of polynomials. These include: tightly containing a cloud of points (e.g., representing an obstacle) with convex or nearly-convex basic semialgebraic sets, computation of Euclidean distance between two such sets, separation of two convex … Read more

Mixed-Integer Nonlinear Programming Formulation of a UAV Path Optimization Problem

We present a mixed-integer nonlinear programming (MINLP) formulation of a UAV path optimization problem in an attempt to find the globally optimum solution. As objective functions in UAV path optimization problems typically tend to be non-convex, traditional optimization solvers (typically local solvers) are prone to local optima, which lead to severely sub-optimal controls. For the … Read more