DC Decomposition of Nonconvex Polynomials with Algebraic Techniques

We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite programming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex-concave procedure … Read more

High Throughput Computing for Massive Scenario Analysis and Optimization to Minimize Cascading Blackout Risk

We describe a simulation-based optimization method that allocates additional capacity to transmission lines in order to minimize the expected value of the load shed due to a cascading blackout. Estimation of the load-shed distribution is accomplished via the ORNL-PSerc-Alaska (OPA) simulation model, which solves a sequence of linear programs. Key to achieving an effective algorithm … Read more

New Formulation and Strong MISOCP Relaxations for AC Optimal Transmission Switching Problem

As the modern transmission control and relay technologies evolve, transmission line switching has become an important option in power system operators’ toolkits to reduce operational cost and improve system reliability. Most recent research has relied on the DC approximation of the power flow model in the optimal transmission switching problem. However, it is known that … Read more

Robust Markov Decision Processes for Medical Treatment Decisions

Medical treatment decisions involve complex tradeoffs between the risks and benefits of various treatment options. The diversity of treatment options that patients can choose over time and uncertainties in future health outcomes, result in a difficult sequential decision making problem. Markov decision processes (MDPs) are commonly used to study medical treatment decisions; however, optimal policies … Read more

Quantitative recovery conditions for tree-based compressed sensing

As shown in [9, 1], signals whose wavelet coefficients exhibit a rooted tree structure can be recovered — using specially-adapted compressed sensing algorithms — from just $n=\mathcal{O}(k)$ measurements, where $k$ is the sparsity of the signal. Motivated by these results, we introduce a simplified proportional-dimensional asymptotic framework which enables the quantitative evaluation of recovery guarantees … Read more

Simple Approximations of Semialgebraic Sets and their Applications to Control

Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes … Read more

Linear conic formulations for two-party correlations and values of nonlocal games

In this work we study the sets of two-party correlations generated from a Bell scenario involving two spatially separated systems with respect to various physical models. We show that the sets of classical, quantum, no-signaling and unrestricted correlations can be expressed as projections of affine sections of appropriate convex cones. As a by-product, we identify … Read more

Construction of IMEX DIMSIMs of high order and stage order

For many systems of differential equations modeling problems in science and engineering, there are often natural splittings of the right hand side into two parts, one of which is non-stff or mildly stff, and the other part is stff. Such systems can be effciently treated by a class of implicit-explicit (IMEX) diagonally implicit multistage integration … Read more

A basis-free null space method for solving generalized saddle point problems

Using an augmented Lagrangian matrix approach, we analytically solve in this paper a broad class of linear systems that includes symmetric and nonsymmetric problems in saddle point form. To this end, some mild assumptions are made and a preconditioning is specially designed to improve the sensitivity of the systems before the calculation of their solutions. … Read more

Variational principles, completeness and the existence of traps in behavioral sciences

In this paper, driven by Behavioral applications to human dynamics, we consider the characterization of completeness in pseudo-quasimetric spaces in term of a generalization of Ekeland’s variational principle in such spaces, and provide examples illustrating significant improvements to some previously obtained results, even in complete metric spaces. At the behavioral level, we show that the … Read more