Optimizing the Spectral Radius

We suggest an approach for finding the maximal and the minimal spectral radius of linear operators from a given compact family of operators, which share a common invariant cone (e.g. for a family of nonnegative matrices). In case of families with so-called product structure, this leads to efficient algorithms for optimizing the spectral radius and … Read more

Robust and Trend-following Student’s t Kalman Smoothers

Two nonlinear Kalman smoothers are proposed using the Student’s t distribution. The first, which we call the T-Robust smoother, finds the maximum a posteriori (MAP) solution for Gaussian process noise and Student’s t observation noise. It is extremely robust against outliers, outperforming the recently proposed L1-Laplace smoother in extreme situations with data containing 20% or … Read more

On the Difficulty of Deciding Asymptotic Stability of Cubic Homogeneous Vector Fields

It is well-known that asymptotic stability (AS) of homogeneous polynomial vector fields of degree one (i.e., linear systems) can be decided in polynomial time e.g. by searching for a quadratic Lyapunov function. Since homogeneous vector fields of even degree can never be AS, the next interesting degree to consider is equal to three. In this … Read more

Global Search Strategies for Solving Multilinear Least-squares Problems

The multilinear least-squares (MLLS) problem is an extension of the linear least-squares problem. The difference is that a multilinear operator is used in place of a matrix-vector product. The MLLS is typically a large-scale problem characterized by a large number of local minimizers. It originates, for instance, from the design of filter networks. We present … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

Robust inversion, dimensionality reduction, and randomized sampling

We consider a class of inverse problems in which the forward model is the solution operator to linear ODEs or PDEs. This class admits several dimensionality-reduction techniques based on data averaging or sampling, which are especially useful for large-scale problems. We survey these approaches and their connection to stochastic optimization. The data-averaging approach is only … Read more

Informational validity of Fechtner’s experiments outcomes

All manifestations of dimensional harmony in nature and human practice are being always characterized by deviations from golden ratio that often makes their acceptance problematic. On the example of Fechner’s experiments the paper discusses the way of solving this problem, based on informational approach, according to which the informatively optimal permissible deviation from dimensional harmony … Read more

A First-Order Smoothing Technique for a Class of Large-Scale Linear Programs

We study a class of linear programming (LP) problems motivated by large-scale machine learning applications. After reformulating the LP as a convex nonsmooth problem, we apply Nesterov’s primal-dual smoothing technique. It turns out that the iteration complexity of the smoothing technique depends on a parameter $\th$ that arises because we need to bound the originally … Read more