Optimal Convergence Rates for the Proximal Bundle Method

We study convergence rates of the classic proximal bundle method for a variety of nonsmooth convex optimization problems. We show that, without any modification, this algorithm adapts to converge faster in the presence of smoothness or a Hölder growth condition. Our analysis reveals that with a constant stepsize, the bundle method is adaptive, yet it … Read more

An Accelerated Minimal Gradient Method with Momentum for Convex Quadratic Optimization

In this article we address the problem of minimizing a strictly convex quadratic function using a novel iterative method. The new algorithm is based on the well–known Nesterov’s accelerated gradient method. At each iteration of our scheme, the new point is computed by performing a line–search scheme using a search direction given by a linear … Read more

FrankWolfe.jl: a high-performance and flexible toolbox for Frank-Wolfe algorithms and Conditional Gradients

We present FrankWolfe.jl, an open-source implementation of several popular Frank-Wolfe and Conditional Gradients variants for first-order constrained optimization. The package is designed with flexibility and high-performance in mind, allowing for easy extension and relying on few assumptions regarding the user-provided functions. It supports Julia’s unique multiple dispatch feature, and interfaces smoothly with generic linear optimization … Read more

Long-run market equilibria in coupled energy sectors: A study of uniqueness

We propose an equilibrium model for coupled markets of multiple energy sectors. The agents in our model are operators of sector-specific production and sector-coupling technologies, as well as price-sensitive consumers with varying demand. We analyze long-run investment in production capacity in each sector and investment in coupling capacity between sectors, as well as production decisions … Read more

Universal Conditional Gradient Sliding for Convex Optimization

In this paper, we present a first-order projection-free method, namely, the universal conditional gradient sliding (UCGS) method, for solving ε-approximate solutions to convex differentiable optimization problems. For objective functions with Hölder continuous gradients, we show that UCGS is able to terminate with ε-solutions with at most O((1/ε)^(2/(1+3v))) gradient evaluations and O((1/ε)^(4/(1+3v))) linear objective optimizations, where … Read more

String-Averaging Methods for Best Approximation to Common Fixed Point Sets of Operators: The Finite and Infinite Cases

Abstract String-averaging is an algorithmic structure used when handling a family of operators in situations where the algorithm at hand requires to employ the operators in a specific order. Sequential orderings are well-known and a simultaneous order means that all operators are used simultaneously (in parallel). String-averaging allows to use strings of indices, constructed by … Read more

Infeasibility detection with primal-dual hybrid gradient for large-scale linear programming

We study the problem of detecting infeasibility of large-scale linear programming problems using the primal-dual hybrid gradient method (PDHG) of Chambolle and Pock (2011). The literature on PDHG has mostly focused on settings where the problem at hand is assumed to be feasible. When the problem is not feasible, the iterates of the algorithm do … Read more

How do exponential size solutions arise in semidefinite programming?

Semidefinite programs (SDPs) are some of the most popular and broadly applicable optimization problems to emerge in the last thirty years. A curious pathology of SDPs, illustrated by a classical example of Khachiyan, is that their solutions may need exponential space to even write down. Exponential size solutions are the main obstacle to solve a … Read more

First-order algorithms for robust optimization problems via convex-concave saddle-point Lagrangian reformulation

Robust optimization (RO) is one of the key paradigms for solving optimization problems affected by uncertainty. Two principal approaches for RO, the robust counterpart method and the adversarial approach, potentially lead to excessively large optimization problems. For that reason, first order approaches, based on online-convex-optimization, have been proposed (Ben-Tal et al. (2015), Kilinc-Karzan and Ho-Nguyen … Read more

An (s^r)hBcResolution ODE Framework for Understanding Discrete-Time Algorithms and Applications to the Linear Convergence of Minimax Problems

There has been a long history of using ordinary differential equations (ODEs) to understand the dynamic of discrete-time algorithms (DTAs). Surprisingly, there are still two fundamental and unanswered questions: (i) it is unclear how to obtain a \emph{suitable} ODE from a given DTA, and (ii) it is unclear the connection between the convergence of a … Read more