A new proximal gradient algorithm for solving mixed variational inequality problems with a novel explicit stepsize and applications

In this paper, we propose a new algorithm for solving monotone mixed variational inequality problems in real Hilbert spaces based on proximal gradient method. Our new algorithm uses a novel explicit stepsize which is proved to be increasing to a positive limitation. This property plays an important role in improving the speed of the algorithm. … Read more

Variance Reduction and Low Sample Complexity in Stochastic Optimization via Proximal Point Method

This paper proposes a stochastic proximal point method to solve a stochastic convex composite optimization problem. High probability results in stochastic optimization typically hinge on restrictive assumptions on the stochastic gradient noise, for example, sub-Gaussian distributions. Assuming only weak conditions such as bounded variance of the stochastic gradient, this paper establishes a low sample complexity … Read more

Extending the Reach of First-Order Algorithms for Nonconvex Min-Max Problems with Cohypomonotonicity

\(\) We focus on constrained, \(L\)-smooth, nonconvex-nonconcave min-max problems either satisfying \(\rho\)-cohypomonotonicity or admitting a solution to the \(\rho\)-weakly Minty Variational Inequality (MVI), where larger values of the parameter \(\rho>0\) correspond to a greater degree of nonconvexity. These problem classes include examples in two player reinforcement learning, interaction dominant min-max problems, and certain synthetic test problems … Read more

Accurate and Warm-Startable Linear Cutting-Plane Relaxations for ACOPF

We present a linear cutting-plane relaxation approach that rapidly proves tight lower bounds for the Alternating Current Optimal Power Flow Problem (ACOPF). Our method leverages outer-envelope linear cuts for well-known second-order cone relaxations for ACOPF along with modern cut management techniques. These techniques prove effective on a broad family of ACOPF instances, including the largest … Read more

Non-facial exposedness of copositive cones over symmetric cones

In this paper, we consider copositive cones over symmetric cones and show that they are never facially exposed when the underlying cone has dimension at least 2. We do so by explicitly exhibiting a non-exposed extreme ray. Our result extends the known fact that the cone of copositive matrices over the nonnegative orthant is not … Read more

Some Primal-Dual Theory for Subgradient Methods for Strongly Convex Optimization

We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual averaging) for the classic subgradient method, the proximal subgradient method, and the switching subgradient method. These equivalences enable $O(1/T)$ convergence guarantees in terms of both their classic primal gap and a … Read more

Krasnoselskii-Mann Iterations: Inertia, Perturbations and Approximation

This paper is concerned with the study of a family of fixed point iterations combining relaxation with different inertial (acceleration) principles. We provide a systematic, unified and insightful analysis of the hypotheses that ensure their weak, strong and linear convergence, either matching or improving previous results obtained by analysing particular cases separately. We also show … Read more

Policy with guaranteed risk-adjusted performance for multistage stochastic linear problems

Risk-averse multi-stage problems and their applications are gaining interest in various fields of applications. Under convexity assumptions, the resolution of these problems can be done with trajectory following dynamic programming algorithms like Stochastic Dual Dynamic Programming (SDDP) to access a deterministic lower bound, and dual SDDP for deterministic upper bounds. In this paper, we leverage … Read more

Active Set-based Inexact Proximal Bundle Algorithm for Stochastic Quadratic Programming

In this paper, we examine two-stage stochastic quadratic programming problems, where the objective function of the first and second stages are quadratic functions, and the constraints are linear. The uncertainty is associated with the second-stage right-hand side and variable bounds. In large-scale settings, when the number of scenarios necessary to represent the underlying stochastic process … Read more

A low-rank augmented Lagrangian method for large-scale semidefinite programming based on a hybrid convex-nonconvex approach

\(\) This paper introduces HALLaR, a new first-order method for solving large-scale semidefinite programs (SDPs) with bounded domain. HALLaR is an inexact augmented Lagrangian (AL) method where the AL subproblems are solved by a novel hybrid low-rank (HLR) method. The recipe behind HLR is based on two key ingredients: 1) an adaptive inexact proximal point … Read more