Most tensor problems are NP-hard

We show that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list here includes: determining the feasibility of a system of bilinear equations, deciding whether a tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or spectral norm; determining a best … Read more

A Facial Reduction Algorithm for Finding Sparse SOS Representations

Facial reduction algorithm reduces the size of the positive semidefinite cone in SDP. The elimination method for a sparse SOS polynomial ([3]) removes unnecessary monomials for an SOS representation. In this paper, we establish a relationship between a facial reduction algorithm and the elimination method for a sparse SOS polynomial. CitationTechnical Report CS-09-02, Department of … Read more

Standard Bi-Quadratic Optimization Problems and Unconstrained Polynomial Reformulations

A so-called Standard Bi-Quadratic Optimization Problem (StBQP) consists in minimizing a bi-quadratic form over the Cartesian product of two simplices (so this is different from a Bi-Standard QP where a quadratic function is minimized over the same set). An application example arises in portfolio selection. In this paper we present a bi-quartic formulation of StBQP, … Read more

Facial reduction algorithms for conic optimization problems

To obtain a primal-dual pair of conic programming problems having zero duality gap, two methods have been proposed: the facial reduction algorithm due to Borwein and Wolkowicz [1,2] and the conic expansion method due to Luo, Sturm, and Zhang [5]. We establish a clear relationship between them. Our results show that although the two methods … Read more

Old Wine in a New Bottle: The MILP Road to MIQCP

This paper surveys results on the NP-hard mixed-integer quadratically constrained programming problem. The focus is strong convex relaxations and valid inequalities, which can become the basis of efficient global techniques. In particular, we discuss relaxations and inequalities arising from the algebraic description of the problem as well as from dynamic procedures based on disjunctive programming. … Read more

Reformulations in Mathematical Programming: Symmetry

If a mathematical program (be it linear or nonlinear) has many symmetric optima, solving it via Branch-and-Bound techniques often yields search trees of disproportionate sizes; thus, finding and exploiting symmetries is an important task. We propose a method for automatically finding the formulation group of any given Mixed-Integer Nonlinear Program, and reformulating the problem so … Read more

Improved bounds for interatomic distance in Morse clusters

We improve the best known lower bounds on the distance between two points of a Morse cluster in $\mathbb{R}^3$, with $\rho \in [4.967,15]$. Our method is a generalization of the one applied to the Lennard-Jones potential in~\cite{Schac}, and it also leads to improvements of lower bounds for the energy of a Morse cluster. Some of … Read more

Strong Valid Inequalities for Orthogonal Disjunctions and Bilinear Covering Sets

In this paper, we develop a convexification tool that enables the construction of convex hulls for orthogonal disjunctive sets using convex extensions and disjunctive programming techniques. A distinguishing feature of our technique is that, unlike most applications of disjunctive programming, it does not require the introduction of new variables in the relaxation. We develop and … Read more

On Non-Convex Quadratic Programming with Box Constraints

Non-Convex Quadratic Programming with Box Constraints is a fundamental NP-hard global optimisation problem. Recently, some authors have studied a certain family of convex sets associated with this problem. We prove several fundamental results concerned with these convex sets: we determine their dimension, characterise their extreme points and vertices, show their invariance under certain affine transformations, … Read more

The Difference Between 5×5 Doubly Nonnegative and Completely Positive Matrices

The convex cone of $n \times n$ completely positive (CPP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CPP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, for $n \le 4$ only, every DNN matrix is CPP. … Read more