A p-Cone Sequential Relaxation Procedure for 0-1 Integer Programs

Given a 0-1 integer programming problem, several authors have introduced sequential relaxation techniques — based on linear and/or semidefinite programming — that generate the convex hull of integer points in at most $n$ steps. In this paper, we introduce a sequential relaxation technique, which is based on $p$-order cone programming ($1 \le p \le \infty$). … Read more

Approximation Algorithms for Linear Fractional-Multiplicative Problems

In this paper we propose a Fully Polynomial Time Approximation Scheme (FPTAS) for a class of optimization problems where the feasible region is a polyhedral one and the objective function is the sum or product of linear ratio functions. The class includes the well known ones of Linear (Sum-of-Ratios) Fractional Programming and Multiplicative Programming. ArticleDownload … Read more

Relaxing the Optimality Conditions of Box QP

We present semidefinite relaxations of nonconvex, box-constrained quadratic programming, which incorporate the first- and second-order necessary optimality conditions. We compare these relaxations with a basic semidefinite relaxation due to Shor, particularly in the context of branch-and-bound to determine a global optimal solution, where it is shown empirically that the new relaxations are significantly stronger. We … Read more

Generating All Efficient Extreme Points in Multiple Objective Linear Programming Problem and Its Application

In this paper, simple linear programming procedure is proposed for generating all efficient extreme points and all efficient extreme rays of a multiple objective linear programming problem (V P). As an application we solve the linear multiplicative programming associated with the problem (VP). CitationsubmittedArticleDownload View PDF

Another Face of DIRECT

It is shown that, contrary to a claim of [D. E. Finkel, and C. T. Kelley, Additive scaling and the DIRECT algorithm, J. Glob. Optim. 36 (2006) 597-608], it is possible to divide the smallest hypercube which contains the low function value by considering hyperrectangles whose points are located on the diagonal of the center … Read more

Iterative Minimization Schemes for Solving the Single Source Localization Problem

We consider the problem of locating a single radiating source from several noisy measurements using a maximum likelihood (ML) criteria. The resulting optimization problem is nonconvex and nonsmooth and thus finding its global solution is in principal a hard task. Exploiting the special structure of the objective function, we introduce and analyze two iterative schemes … Read more

Stopping Rules for Box-Constrained Stochastic Global Optimization

We present three new stopping rules for Multistart based methods. The first uses a device that enables the determination of the coverage of the bounded search domain. The second is based on the comparison of asymptotic expectation values of observable quantities to the actually measured ones. The third offers a probabilistic estimate for the number … Read more

Semidefinite Representation of Convex Sets

Let $S =\{x\in \re^n:\, g_1(x)\geq 0, \cdots, g_m(x)\geq 0\}$ be a semialgebraic set defined by multivariate polynomials $g_i(x)$. Assume $S$ is convex, compact and has nonempty interior. Let $S_i =\{x\in \re^n:\, g_i(x)\geq 0\}$, and $\bdS$ (resp. $\bdS_i$) be the boundary of $S$ (resp. $S_i$). This paper, as does the subject of semidefinite programming (SDP), concerns … Read more

Semidefinite Programming versus the Reformulation-Linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming

We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that … Read more