A Primal-Dual Algorithm for Risk Minimization

In this paper, we develop an algorithm to efficiently solve risk-averse optimization problems posed in reflexive Banach space. Such problems often arise in many practical applications as, e.g., optimization problems constrained by partial differential equations with uncertain inputs. Unfortunately, for many popular risk models including the coherent risk measures, the resulting risk-averse objective function is … Read more

Graph Recovery From Incomplete Moment Information

We investigate a class of moment problems, namely recovering a measure supported on the graph of a function from partial knowledge of its moments, as for instance in some problems of optimal transport or density estimation. We show that the sole knowledge of first degree moments of the function, namely linear measurements, is sufficient to … Read more

Stokes, Gibbs and volume computation of semi-algebraic sets

We consider the problem of computing the Lebesgue volume of compact basic semi-algebraic sets. In full generality, it can be approximated as closely as desired by a converging hierarchy of upper bounds obtained by applying the Moment-SOS (sums of squares) methodology to a certain infinite-dimensional linear program (LP). At each step one solves a semidefinite … Read more

The Strip Method for Shape Derivatives

A major challenge in shape optimization is the coupling of finite element method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multiphysics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. The volume and boundary methods are two approaches … Read more

KKT Preconditioners for PDE-Constrained Optimization with the Helmholtz Equation

This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the … Read more

Optimal Learning for Structured Bandits

We study structured multi-armed bandits, which is the problem of online decision-making under uncertainty in the presence of structural information. In this problem, the decision-maker needs to discover the best course of action despite observing only uncertain rewards over time. The decision- maker is aware of certain structural information regarding the reward distributions and would … Read more

Binary Optimal Control by Trust-Region Steepest Descent

We present a trust-region steepest descent method for dynamic optimal control problems with binary-valued integrable control functions. Our method interprets the control function as an indicator function of a measurable set and makes set-valued adjustments derived from the sublevel sets of a topological gradient function. By combining this type of update with a trust-region framework, … Read more

Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally Robust Optimization

We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator—that is, a measurable function of the observation—and a fictitious adversary choosing a prior—that is, … Read more

Logarithmic-Barrier Decomposition Interior-Point Methods for Stochastic Linear Optimization in a Hilbert Space

Several logarithmic-barrier interior-point methods are now available for solving two-stage stochastic optimization problems with recourse in the finite-dimensional setting. However, despite the genuine need for studying such methods in general spaces, there are no infinite-dimensional analogs of these methods. Inspired by this evident gap in the literature, in this paper, we propose logarithmic-barrier decomposition-based interior-point … Read more

Generalized Conditional Gradient with Augmented Lagrangian for Composite Minimization

In this paper we propose a splitting scheme which hybridizes generalized conditional gradient with a proximal step which we call CGALP algorithm, for minimizing the sum of three proper convex and lower-semicontinuous functions in real Hilbert spaces. The minimization is subject to an affine constraint, that allows in particular to deal with composite problems (sum … Read more