An Efficient Algorithm to the Integrated Shift and Task Scheduling Problem

Abstract   This paper deals with operational models for integrated shift and task scheduling problem. Staff scheduling problem is a special case of this with staff requirements as given input to the problem. Both problems become hard to solve when the problems are considered with flexible shifts. Current literature on these problems leaves good scope … Read more

Approximating the Gomory Mixed-Integer Cut Closure Using Historical Data

Many operations related optimization problems involve repeatedly solving similar mixed integer linear programming (MILP) instances with the same constraint matrix but differing objective coefficients and right-hand-side values. The goal of this paper is to generate good cutting-planes for such instances using historical data. Gomory mixed integer cuts (GMIC) for a general MILP can be parameterized … Read more

Accelerating Benders decomposition for solving a sequence of sample average approximation replications

Sample average approximation (SAA) is a technique for obtaining approximate solutions to stochastic programs that uses the average from a random sample to approximate the expected value that is being optimized. Since the outcome from solving an SAA is random, statistical estimates on the optimal value of the true problem can be obtained by solving … Read more

Cut-based Conflict Analysis in Mixed Integer Programming

For almost two decades, mixed integer programming (MIP) solvers have used graph- based conflict analysis to learn from local infeasibilities during branch-and-bound search. In this paper, we improve MIP conflict analysis by instead using reasoning based on cuts, inspired by the development of conflict-driven solvers for pseudo- Boolean optimization. Phrased in MIP terminology, this type … Read more

Models for two-dimensional bin packing problems with customer order spread

In this paper, we address an extension of the classical two-dimensional bin packing (2BPP) that considers the spread of customer orders (2BPP-OS). The 2BPP-OS addresses a set of rectangular items, required from different customer orders, to be cut from a set of rectangular bins. All the items of a customer order are dispatched together to … Read more

A Row-wise Algorithm for Graph Realization

Given a \(\{0,1\}\)-matrix \(M\), the graph realization problem for \(M\) asks if there exists a spanning forest such that the columns of \(M\) are incidence vectors of paths in the forest. The problem is closely related to the recognition of network matrices, which are a large subclass of totally unimodular matrices and have many applications … Read more

Machine Learning for Optimization-Based Separation: the Case of Mixed-Integer Rounding Cuts

Mixed-Integer Rounding (MIR) cuts are effective at improving the dual bound in Mixed-Integer Linear Programming (MIP). However, in practice, MIR cuts are separated heuristically rather than using optimization as the latter is prohibitively expensive. We present a hybrid cut generation framework in which we train a Machine Learning (ML) model to inform cut generation for … Read more

Optimizing the lead time of operational flexibility trading from distributed industrial energy systems in future energy and flexibility markets

To meet the challenges of increasing volatile and distributed renewable energy generation in the electric grid, local flexibility and energy markets are currently investigated. These markets aim to encourage prosumers to trade their available flexible power locally, to be used if a grid congestion is being predicted. The markets are emerging, but the characterizing parameter … Read more

The Overflowing Bin Packing Problem: Theoretical Results and a New Flow Formulation

We consider a recently proposed one-dimensional packing problem, called the overflowing bin packing problem (OBPP). In this scenario, we are given a set of items (of known sizes) and a set of bins (of known capacities). Roughly speaking, the task is to assign the items to the bins in such a way that the total … Read more

A new framework to generate Lagrangian cuts in multistage stochastic mixed-integer programming

Based on recent advances in Benders decomposition and two-stage stochastic integer programming we present a new generalized framework to generate Lagrangian cuts in multistage stochastic mixed-integer linear programming (MS-MILP). This framework can be incorporated into decomposition methods for MS-MILPs, such as the stochastic dual dynamic integer programming (SDDiP) algorithm. We show how different normalization techniques … Read more