An Exact Algorithm for a Resource Allocation Problem in Mobile Wireless Communications

We consider a challenging resource allocation problem arising in mobile wireless communications. The goal is to allocate the available channels and power in a so-called OFDMA system, in order to maximise the transmission rate, subject to quality of service (QoS) constraints. Standard MINLP software struggled to solve even small instances of this problem. Using outer … Read more

Low-Complexity Relaxations and Convex Hulls of Disjunctions on the Positive Semidefinite Cone and General Regular Cones

In this paper we analyze general two-term disjunctions on a regular cone $\K$ and derive a general form for a family of convex inequalities which are valid for the resulting nonconvex sets. Under mild technical assumptions, these inequalities collectively describe the closed convex hulls of these disjunctions, and if additional conditions are satisfied, a single … Read more

Penalty Alternating Direction Methods for Mixed-Integer Optimization: A New View on Feasibility Pumps

Feasibility pumps are highly effective primal heuristics for mixed-integer linear and nonlinear optimization. However, despite their success in practice there are only few works considering their theoretical properties. We show that feasibility pumps can be seen as alternating direction methods applied to special reformulations of the original problem, inheriting the convergence theory of these methods. … Read more

A Framework for Solving Mixed-Integer Semidefinite Programs

Mixed-integer semidefinite programs arise in many applications and several problem-specific solution approaches have been studied recently. In this paper, we investigate a generic branch-and-bound framework for solving such problems. We first show that strict duality of the semidefinite relaxations is inherited to the subproblems. Then solver components like dual fixing, branching rules, and primal heuristics … Read more

Computing Restricted Isometry Constants via Mixed-Integer Semidefinite Programming

One of the fundamental tasks in compressed sensing is finding the sparsest solution to an underdetermined system of linear equations. It is well known that although this problem is NP-hard, under certain conditions it can be solved by using a linear program which minimizes the 1-norm. The restricted isometry property has been one of the … Read more

Three Enhancements for Optimization-Based Bound Tightening

Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper … Read more

A joint routing and speed optimization problem

Fuel cost contributes to a significant portion of operating cost in cargo transportation. Though classic routing models usually treat fuel cost as input data, fuel consumption heavily depends on the travel speed, which has led to the study of optimizing speeds over a given fixed route. In this paper, we propose a joint routing and … Read more

Column Generation based Alternating Direction Methods for solving MINLPs

Traditional decomposition based branch-and-bound algorithms, like branch-and-price, can be very efficient if the duality gap is not too large. However, if this is not the case, the branch-and-bound tree may grow rapidly, preventing the method to find a good solution. In this paper, we present a new decompositon algorithm, called ADGO (Alternating Direction Global Optimization … Read more

GasLib – A Library of Gas Network Instances

The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances … Read more

Valid Inequalities for Separable Concave Constraints with Indicator Variables

We study valid inequalities for optimization models that contain both binary indicator variables and separable concave constraints. These models reduce to a mixed-integer linear program (MILP) when the concave constraints are ignored, or to a nonconvex global optimization problem when the binary restrictions are ignored. In algorithms designed to solve these problems to global optimality, … Read more