Optimal Price Zones of Electricity Markets: A Mixed-Integer Multilevel Model and Global Solution Approaches

Mathematical modeling of market design issues in liberalized electricity markets often leads to mixed-integer nonlinear multilevel optimization problems for which no general-purpose solvers exist and which are intractable in general. In this work, we consider the problem of splitting a market area into a given number of price zones such that the resulting market design … Read more

The Robust Uncapacitated Lot Sizing Model with Uncertainty Range

We study robust versions of the uncapacitated lot sizing problem, where the demand is subject to uncertainty. The robust models are guided by three parameters, namely, the total scaled uncertainty budget, the minimum number of periods in which one would like the demand to be protected against uncertainty, and the minimum scaled protection level per … Read more

Fooling Sets and the Spanning Tree Polytope

In the study of extensions of polytopes of combinatorial optimization problems, a notorious open question is that for the size of the smallest extended formulation of the Minimum Spanning Tree problem on a complete graph with n nodes. The best known lower bound is \Omega(n^2), the best known upper bound is O(n^3). In this note … Read more

An optimization-based approach for delivering radio-pharmaceuticals to medical imaging centers

It is widely recognized that early diagnosis of most types of cancers can increase the chances of full recovery or substantially prolong the life of patients. Positron Emission Tomography (PET) has become the standard way to diagnose many types of cancers by generating high quality images of the affected organs. In order to create an … Read more

Recent Progress Using Matheuristics for Strategic Maritime Inventory Routing

This paper presents an extensive computational study of simple, but prominent matheuristics (i.e., heuristics that rely on mathematical programming models) to fi nd high quality ship schedules and inventory policies for a class of maritime inventory routing problems. Our computational experiments are performed on a set of the publicly available MIRPLib instances. This class of inventory … Read more

Flow formulations for curriculum-based course timetabling

In this paper we present two mixed-integer programming formulations for the curriculum based course timetabling problem (CTT). We show that the formulations contain underlying network structures by dividing the CTT into two separate models and then connect the two models using flow formulation techniques. The first mixed-integer programming formulation is based on an underlying minimum … Read more

Computing Feasible Points for Binary MINLPs with MPECs

Nonconvex mixed-binary nonlinear optimization problems frequently appear in practice and are typically extremely hard to solve. In this paper we discuss a class of primal heuristics that are based on a reformulation of the problem as a mathematical program with equilibrium constraints. We then use different regularization schemes for this class of problems and use … Read more

Mixed-integer linear representability, disjunctions, and Chvatal functions — modeling implications

Jeroslow and Lowe gave an exact geometric characterization of subsets of $\mathbb{R}^n$ that are projections of mixed-integer linear sets, also known as MILP-representable or MILP-R sets. We give an alternate algebraic characterization by showing that a set is MILP-R {\em if and only if} the set can be described as the intersection of finitely many … Read more

On Dantzig figures from graded lexicographic orders

We construct two families of Dantzig figures, which are $d$-dimensional polytopes with $2d$ facets and an antipodal vertex pair, from convex hulls of initial subsets for the graded lexicographic (grlex) and graded reverse lexicographic (grevlex) orders on $\mathbb{Z}^{d}_{\geq 0}$. These polytopes have the same number of vertices $O(d^2)$ and the same number of edges $O(d^3)$, … Read more

The structure of the infinite models in integer programming

The infinite models in integer programming can be described as the convex hull of some points or as the intersection of half-spaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for finite dimensional corner polyhedra. One consequence is that nonnegative continuous functions suffice to … Read more