Complete mixed integer linear programming formulations for modularity density based clustering

Modularity density maximization is a clustering method that improves some issues of the commonly-used modularity maximization approach. Recently, some Mixed-Integer Linear Programming (MILP) reformulations have been proposed in the literature for the modularity density maximization problem, but they require as input the solution of a set of auxiliary binary Non-Linear Programs (NLPs). These can become … Read more

A parametric programming approach to redefine the global configuration of resource constraints of 0-1-Integer Linear Programming problems.

A mathematical programming approach to deal with the global configuration of resource constraints is presented. A specialized parametric programming algorithm to obtain the pareto set for the biobjective problem that appears to deal with the global configuration for 0-1-Integer Linear Programing problems is presented and implemented. Computational results for Multiconstrained Knapsack problems and Bounded Knapsack … Read more

Ambiguous Chance-Constrained Binary Programs under Mean-Covariance Information

We consider chance-constrained binary programs, where each row of the inequalities that involve uncertainty needs to be satis ed probabilistically. Only the information of the mean and covariance matrix is available, and we solve distributionally robust chance-constrained binary programs (DCBP). Using two different ambiguity sets, we equivalently reformulate the DCBPs as 0-1 second-order cone (SOC) programs. … Read more

Mixed Integer Quadratic Optimization Formulations for Eliminating Multicollinearity Based on Variance Inflation Factor

The variance inflation factor, VIF, is the most frequently used indicator for detecting multicollinearity in multiple linear regression models. This paper proposes two mixed integer quadratic optimization formulations for selecting the best subset of explanatory variables under upper-bound constraints on VIF of selected variables. Computational results illustrate the effectiveness of our optimization formulations based on … Read more

The Multilinear polytope for acyclic hypergraphs

We consider the Multilinear polytope defined as the convex hull of the set of binary points satisfying a collection of multilinear equations. Such sets are of fundamental importance in many types of mixed-integer nonlinear optimization problems, such as binary polynomial optimization. Utilizing an equivalent hypergraph representation, we study the facial structure of the Multilinear polytope … Read more

Improving the Randomization Step in Feasibility Pump

Feasibility pump (FP) is a successful primal heuristic for mixed-integer linear programs (MILP). The algorithm consists of three main components: rounding fractional solution to a mixed-integer one, projection of infeasible solutions to the LP relaxation, and a randomization step used when the algorithm stalls. While many generalizations and improvements to the original Feasibility Pump have … Read more

Maximizing a class of utility functions over the vertices of a polytope

Given a polytope X, a monotone concave univariate function g, and two vectors c and d, we study the discrete optimization problem of finding a vertex of X that maximizes the utility function c’x + g(d’x). This problem has numerous applications in combinatorial optimization with a probabilistic objective, including estimation of project duration with stochastic … Read more

An Effective Dynamic Programming Algorithm for the Minimum-Cost Maximal Knapsack Packing

Given a set of n items with profits and weights and a knapsack capacity C, we study the problem of finding a maximal knapsack packing that minimizes the profit of selected items. We propose for the first time an effective dynamic programming (DP) algorithm which has O(nC) time complexity and O(n+C) space complexity. We demonstrate … Read more

Pseudo basic steps: Bound improvement guarantees from Lagrangian decomposition in convex disjunctive programming

An elementary, but fundamental, operation in disjunctive programming is a basic step, which is the intersection of two disjunctions to form a new disjunction. Basic steps bring a disjunctive set in regular form closer to its disjunctive normal form and, in turn, produce relaxations that are at least as tight. An open question is: What … Read more

A generalized simplex method for integer problems given by verification oracles

We consider a linear problem over a finite set of integer vectors and assume that there is a verification oracle, which is an algorithm being able to verify whether a given vector optimizes a given linear function over the feasible set. Given an initial solution, the algorithm proposed in this paper finds an optimal solution … Read more