The Largest Unsolved QAP Instance Tai256c Can Be Converted into A 256-dimensional Simple BQOP with A Single Cardinality Constraint

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB; a 1.48\% gap remains between the best known feasible objective value and lower bound of the unknown optimal value. This paper shows that the instance can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which … Read more

Improving reliability with optimal allocation of maintenance resources: an application to power distribution networks

Power distribution networks should strive for reliable delivery of energy. In this paper, we support this endeavor by addressing the Maintenance Resources Allocation Problem (MRAP). This problem consists of scheduling preventive maintenance plans on the equipment of distribution networks for a planning horizon, seeking the best trade-offs between system reliability and maintenance budgets. We propose … Read more

On the Exactness of Dantzig-Wolfe Relaxation for Rank Constrained Optimization Problems

In the rank-constrained optimization problem (RCOP), it minimizes a linear objective function over a prespecified closed rank-constrained domain set and $m$ generic two-sided linear matrix inequalities. Motivated by the Dantzig-Wolfe (DW) decomposition, a popular approach of solving many nonconvex optimization problems, we investigate the strength of DW relaxation (DWR) of the RCOP, which admits the … Read more

A Consensus-Based Alternating Direction Method for Mixed-Integer and PDE-Constrained Gas Transport Problems

We consider dynamic gas transport optimization problems, which lead to large-scale and nonconvex mixed-integer nonlinear optimization problems (MINLPs) on graphs. Usually, the resulting instances are too challenging to be solved by state-of-the-art MINLP solvers. In this paper, we use graph decompositions to obtain multiple optimization problems on smaller blocks, which can be solved in parallel … Read more

An Exact Method for Nonlinear Network Flow Interdiction Problems

We study network flow interdiction problems with nonlinear and nonconvex flow models. The resulting model is a max-min bilevel optimization problem in which the follower’s problem is nonlinear and nonconvex. In this game, the leader attacks a limited number of arcs with the goal to maximize the load shed and the follower aims at minimizing … Read more

A Combinatorial Flow-based Formulation for Temporal Bin Packing Problems

We consider two neighboring generalizations of the classical bin packing problem: the temporal bin packing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on homogeneous servers of limited capacity. To … Read more

Vehicle Routing with Heterogeneous Time Windows

We consider a novel variant of the heterogeneous vehicle routing problem (VRP) in which each customer has different availability time windows for every vehicle. In particular, this covers our motivating application of planning daily delivery tours for a single vehicle, where customers can be available at different times each day. The existing literature on heterogeneous … Read more

Evaluating Mixed-Integer Programming Models over Multiple Right-hand Sides

A critical measure of model quality for a mixed-integer program (MIP) is the difference, or gap, between its optimal objective value and that of its linear programming relaxation. In some cases, the right-hand side is not known exactly; however, there is no consensus metric for evaluating a MIP model when considering multiple right-hand sides. In … Read more

Dual Bounds from Decision Diagram-Based Route Relaxations: An Application to Truck-Drone Routing

For vehicle routing problems, strong dual bounds on the optimal value are needed to develop scalable exact algorithms, as well as to evaluate the performance of heuristics. In this work, we propose an iterative algorithm to compute dual bounds motivated by connections between decision diagrams (DDs) and dynamic programming (DP) models used for pricing in … Read more