On the Complexity of Branching Proofs

We consider the task of proving integer infeasibility of a bounded convex set K in R^n using a general branching proof system. In a general branching proof, one constructs a branching tree by adding an integer disjunction at each node, such that the leaves of the tree correspond to empty sets (i.e., K together with … Read more

Closing the Gap in Linear Bilevel Optimization: A New Valid Primal-Dual Inequality

Linear bilevel optimization problems are often tackled by replacing the linear lower-level problem with its Karush–Kuhn–Tucker (KKT) conditions. The resulting single-level problem can be solved in a branch-and-bound fashion by branching on the complementarity constraints of the lower-level problem’s optimality conditions. While in mixed-integer single-level optimization branch- and-cut has proven to be a powerful extension … Read more

Linear Programming and Community Detection

The problem of community detection with two equal-sized communities is closely related to the minimum graph bisection problem over certain random graph models. In the stochastic block model distribution over networks with community structure, a well-known semidefinite programming (SDP) relaxation of the minimum bisection problem recovers the underlying communities whenever possible. Motivated by their superior … Read more

Building Load Control using Distributionally Robust Chance-Constrained Programs with Right-Hand Side Uncertainty and the Risk-Adjustable Variants

Aggregation of heating, ventilation, and air conditioning (HVAC) loads can provide reserves to absorb volatile renewable energy, especially solar photo-voltaic (PV) generation. However, the time-varying PV generation is not perfectly known when the system operator decides the HVAC control schedules. To consider the unknown uncertain PV generation, in this paper, we formulate a distributionally robust … Read more

A Restricted Dual Peaceman-Rachford Splitting Method for QAP

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of the quadratic assignment problem, QAP. We use a modified restricted contractive splitting method, rPRSM, approach. Our strengthened bounds and new dual multiplier estimates improve on the bounds and convergence results in the literature. CitationDepartment of Combinatorics & Optimization, University of Waterloo, Canada,06/2019ArticleDownload … Read more

Proximity in Concave Integer Quadratic Programming

A classic result by Cook, Gerards, Schrijver, and Tardos provides an upper bound of n∆ on the proximity of optimal solutions of an Integer Linear Programming problem and its standard linear relaxation. In this bound, n is the number of variables and ∆ denotes the maximum of the absolute values of the subdeterminants of the … Read more

Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores

Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in … Read more

Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks

Bayesian Networks (BNs) represent conditional probability relations among a set of random variables (nodes) in the form of a directed acyclic graph (DAG), and have found diverse applications in knowledge discovery. We study the problem of learning the sparse DAG structure of a BN from continuous observational data. The central problem can be modeled as … Read more

Exact and Approximation Algorithms for Sparse PCA

Sparse Principal Component Analysis (SPCA) is designed to enhance the interpretability of traditional Principal Component Analysis (PCA) by optimally selecting a subset of features that comprise the first principal component. Given the NP-hard nature of SPCA, most current approaches resort to approximate solutions, typically achieved through tractable semidefinite programs (SDPs) or heuristic methods. To solve SPCA to … Read more

Robustification of the k-Means Clustering Problem and Tailored Decomposition Methods: When More Conservative Means More Accurate

k-means clustering is a classic method of unsupervised learning with the aim of partitioning a given number of measurements into k clusters. In many modern applications, however, this approach suffers from unstructured measurement errors because the k-means clustering result then represents a clustering of the erroneous measurements instead of retrieving the true underlying clustering structure. … Read more