A converging Benders’ decomposition algorithm for two-stage mixed-integer recourse models

We propose a new solution method for two-stage mixed-integer recourse models. In contrast to existing approaches, we can handle general mixed-integer variables in both stages, and thus, e.g., do not require that the first-stage variables are binary. Our solution method is a Benders’ decomposition, in which we iteratively construct tighter approximations of the expected second-stage … Read more

The Arc-Item-Load and Related Formulations for the Cumulative Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) consists of finding the cheapest way to serve a set of customers with a fleet of vehicles of a given capacity. While serving a particular customer, each vehicle picks up its demand and carries its weight throughout the rest of its route. While costs in the classical CVRP are … Read more

An exact solution approach for an electric bus dispatch problem

We study how to efficiently plan the daily bus dispatch operation within a public transport terminal working with a fleet of electric buses. This requires to formulate and solve a new variant of the Vehicle Scheduling Problem model, in which one has to assign trip itineraries to each vehicle considering that driving ranges are limited, … Read more

An Exact Projection-Based Algorithm for Bilevel Mixed-Integer Problems with Nonlinearities

We propose an exact global solution method for bilevel mixed-integer optimization problems with lower-level integer variables and including nonlinear terms such as, \eg, products of upper-level and lower-level variables. Problems of this type are extremely challenging as a single-level reformulation suitable for off-the-shelf solvers is not available in general. In order to solve these problems … Read more

On the Integrality Gap of Binary Integer Programs with Gaussian Data

For a binary integer program (IP) $\max c^\T x, Ax \leq b, x \in \{0,1\}^n$, where $A \in \R^{m \times n}$ and $c \in \R^n$ have independent Gaussian entries and the right-hand side $b \in \R^m$ satisfies that its negative coordinates have $\ell_2$ norm at most $n/10$, we prove that the gap between the value … Read more

Polyhedral Analysis of Symmetric Multilinear Polynomials over Box Constraints

It is well-known that the convex and concave envelope of a multilinear polynomial over a box are polyhedral functions. Exponential-sized extended and projected formulations for these envelopes are also known. We consider the convexification question for multilinear polynomials that are symmetric with respect to permutations of variables. Such a permutation-invariant structure naturally implies a quadratic-sized … Read more

On Recognizing Staircase Compatibility

For the problem to find an m-clique in an m-partite graph, staircase compatibility has recently been introduced as a polynomial-time solvable special case. It is a property of a graph together with an m-partition of the vertex set and total orders on each subset of the partition. In optimization problems involving m-cliques in m-partite graphs … Read more

A Distributionally-Robust Service Center Location Problem with Decision Dependent Demand Induced from a Maximum Attraction Principle

We establish and analyze a service center location model with a simple but novel decision-dependent demand induced from a maximum attrac- tion principle. The model formulations are investigated in the distributionally- robust optimization framework. A statistical model that is based on the max- imum attraction principle for estimating customer demand and utility gain from service … Read more

An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems

Cardinality-constrained optimization problems are notoriously hard to solve both in theory and practice. However, as famous examples such as the sparse portfolio optimization and best subset selection problems show, this class is extremely important in real-world applications. In this paper, we apply a penalty alternating direction method to these problems. The key idea is to … Read more

Compact mixed-integer programming relaxations in quadratic optimization

We present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions due to Yarotsky, formulating this (simple) approximation using mixed-integer programming (MIP). Notably, the number of constraints, binary variables, and auxiliary continuous variables used in this formulation grows logarithmically in … Read more