Extending Exact Convex Relaxations of Quadratically Constrained Quadratic Programs

A convex relaxation of a quadratically constrained quadratic program (QCQP) is called exact if it has a rank-$1$ optimal solution that corresponds to an optimal solution of the  QCQP. Given a QCQP whose convex relaxation is exact,  this paper investigates the incorporation of additional quadratic inequality constraints under a non-intersecting quadratic constraint condition while maintaining … Read more

Facial approach for constructing stationary points for mathematical programs with cone complementarity constraints

This paper studies stationary points in mathematical programs with cone complementarity constraints (CMPCC). We begin by reviewing various formulations of CMPCC and revisiting definitions for Bouligand, proximal strong, regular strong, Wachsmuth’s strong, L-strong, weak, as well as Mordukhovich and Clarke stationary points, establishing a comprehensive framework for CMPCC. Building on key principles related to cone … Read more

Solving unbounded optimal control problems with the moment-SOS hierarchy

The behaviour of the moment-sums-of-squares (moment-SOS) hierarchy for polynomial optimal control problems on compact sets has been explored to a large extent. Our contribution focuses on the case of non-compact control sets. We describe a new approach to optimal control problems with unbounded controls, using compactification by partial homogenization, leading to an equivalent infinite dimensional … Read more

Local Linear Convergence of the Alternating Direction Method of Multipliers for Semidefinite Programming under Strict Complementarity

We investigate the local linear convergence properties of the Alternating Direction Method of Multipliers (ADMM) when applied to Semidefinite Programming (SDP). A longstanding belief suggests that ADMM is only capable of solving SDPs to moderate accuracy, primarily due to its sublinear worst-case complexity and empirical observations of slow convergence. We challenge this notion by introducing … Read more

The uniqueness of Lyapunov rank among symmetric cones

The Lyapunov rank of a cone is the dimension of the Lie algebra of its automorphism group. It is invariant under linear isomorphism and in general not unique—two or more non-isomorphic cones can share the same Lyapunov rank. It is therefore not possible in general to identify cones using Lyapunov rank. But suppose we look … Read more

Interior-point algorithms with full Newton steps for nonsymmetric convex conic optimization

We design and analyze primal-dual, feasible interior-point algorithms (IPAs) employing full Newton steps to solve convex optimization problems in standard conic form. Unlike most nonsymmetric cone programming methods, the algorithms presented in this paper require only a logarithmically homogeneous self-concordant barrier (LHSCB) of the primal cone, but compute feasible and \(\varepsilon\)-optimal solutions to both the … Read more

Constructing QCQP Instances Equivalent to Their SDP Relaxations

General quadratically constrained quadratic programs (QCQPs) are challenging to solve as they are known to be NP-hard. A popular approach to approximating QCQP solutions is to use semidefinite programming (SDP) relaxations. It is well-known that the optimal value η of the SDP relaxation problem bounds the optimal value ζ  of the QCQP from below, i.e., … Read more

Facial structure of copositive and completely positive cones over a second-order cone

We classify the faces of copositive and completely positive cones over a second-order cone and investigate their dimension and exposedness properties. Then we compute two parameters related to chains of faces of both cones. At the end, we discuss some possible extensions of the results with a view toward analyzing the facial structure of general … Read more

Lagrangian Duality for Mixed-Integer Semidefinite Programming: Theory and Algorithms

This paper presents the Lagrangian duality theory for mixed-integer semidefinite programming (MISDP). We derive the Lagrangian dual problem and prove that the resulting Lagrangian dual bound dominates the bound obtained from the continuous relaxation of the MISDP problem. We present a hierarchy of Lagrangian dual bounds by exploiting the theory of integer positive semidefinite matrices … Read more

Stable Set Polytopes with Rank |V(G)|/3 for the Lovász-Schrijver SDP Operator

We study the lift-and-project rank of the stable set polytope of graphs with respect to the Lovász–Schrijver SDP operator \( \text{LS}_+ \) applied to the fractional stable set polytope. In particular, we show that for every positive integer \( \ell \), the smallest possible graph with \( \text{LS}_+ \)-rank \( \ell \) contains \( 3\ell … Read more