Sieve-SDP: a simple facial reduction algorithm to preprocess semidefinite programs

We introduce Sieve-SDP, a simple algorithm to preprocess semidefinite programs (SDPs). Sieve-SDP belongs to the class of facial reduction algorithms. It inspects the constraints of the problem, deletes redundant rows and columns, and reduces the size of the variable matrix. It often detects infeasibility. It does not rely on any optimization solver: the only subroutine … Read more

Complete Facial Reduction in One Step for Spectrahedra

A spectrahedron is the feasible set of a semidefinite program, SDP, i.e., the intersection of an affine set with the positive semidefinite cone. While strict feasibility is a generic property for random problems, there are many classes of problems where strict feasibility fails and this means that strong duality can fail as well. If the … Read more

Improving Efficiency and Scalability of Sum of Squares Optimization: Recent Advances and Limitations

It is well-known that any sum of squares (SOS) program can be cast as a semidefinite program (SDP) of a particular structure and that therein lies the computational bottleneck for SOS programs, as the SDPs generated by this procedure are large and costly to solve when the polynomials involved in the SOS programs have a … Read more

Minimizer extraction in polynomial optimization is robust

In this article we present a robustness analysis of the extraction of optimizers in polynomial optimization. Optimizers can be extracted by solving moment problems using flatness and the Gelfand-Naimark-Segal (GNS) construction. Here a modification of the GNS construction is presented that applies even to non-flat data, and then its sensitivity under perturbations is studied. The … Read more

Tightness of a new and enhanced semidefinite relaxation for MIMO detection

In this paper, we consider a fundamental problem in modern digital communications known as multi-input multi-output (MIMO) detection, which can be formulated as a complex quadratic programming problem subject to unit-modulus and discrete argument constraints. Various semidefinite relaxation (SDR) based algorithms have been proposed to solve the problem in the literature. In this paper, we … Read more

Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions

We consider the stability of a class of parameterized conic programming problems which are more general than the C2-smooth parameterization. We show that when the Karush-Kuhn-Tucker (KKT) condition, the constraint nondegeneracy condition, the strict complementary condition and the second order sucient condition (named as Jacobian uniqueness conditions here) are satis ed at a feasible point of … Read more

Perturbation analysis of nonlinear semidefinite programming under Jacobian uniqueness conditions

We consider the stability of a class of parameterized nonlinear semidefinite programming problems whose objective function and constraint mapping all have second partial derivatives only with respect to the decision variable which are jointly continuous. We show that when the Karush-Kuhn-Tucker (KKT) condition, the constraint nondegeneracy condition, the strict complementary condition and the second order … Read more

Exploiting sparsity for the min k-partition problem

The minimum k-partition problem is a challenging combinatorial problem with a diverse set of applications ranging from telecommunications to sports scheduling. It generalizes the max-cut problem and has been extensively studied since the late sixties. Strong integer formulations proposed in the literature suffer from a prohibitive number of valid inequalities and integer variables. In this … Read more

Lower bounds on matrix factorization ranks via noncommutative polynomial optimization

We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of our hierarchies, compare them … Read more

Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization

In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a quantum … Read more