Maximal entropy in the moment body

A moment body is a linear projection of the spectraplex, the convex set of trace-one positive semidefinite matrices. Determining whether a given point lies within a given moment body is a problem with numerous applications in quantum state estimation or polynomial optimization. This moment body membership oracle can be addressed with semidefinite programming, for which … Read more

Efficient QUIC-Based Damped Inexact Iterative Reweighting for Sparse Inverse Covariance Estimation with Nonconvex Partly Smooth Regularization

In this paper, we study sparse inverse covariance matrix estimation incorporating partly smooth nonconvex regularizers. To solve the resulting regularized log-determinant problem, we develop DIIR-QUIC—a novel Damped Inexact Iteratively Reweighted algorithm based on QUadratic approximate Inverse Covariance (QUIC) method. Our approach generalizes the classic iteratively reweighted \(\ell_1\) scheme through damped fixed-point updates. A key novelty … Read more

Dual certificates of primal cone membership

We discuss easily verifiable cone membership certificates, that is, certificates proving relations of the form \( b\in K \) for convex cones \(K\) that consist of vectors in the dual cone \(K^*\). Vectors in the dual cone are usually associated with separating hyperplanes, and so they are interpreted as certificates of non-membership in the standard … Read more

SDP bounds on the stability number via ADMM and intermediate levels of the Lasserre hierarchy

We consider the Lasserre hierarchy for computing bounds on the stability number of graphs. The semidefinite programs (SDPs) arising from this hierarchy involve large matrix variables and many linear constraints, which makes them difficult to solve using interior-point methods. We propose solving these SDPs using the alternating direction method of multipliers (ADMM). When the second … Read more

A Computational Search for Minimal Obstruction Graphs for the Lovász–Schrijver SDP Hierarchy

We study the lift-and-project relaxations of the stable set polytope of graphs generated by \( \text{LS}_+ \), the SDP lift-and-project operator devised by Lovász and Schrijver. In particular, we focus on searching for \( \ell \)-minimal graphs, which are graphs on $3\ell$ vertices whose stable set polytope has rank \( \ell \) with respect to … Read more

Rank-one convexification for convex quadratic optimization with step function penalties

We investigate convexification in convex quadratic optimization with step function penalties. Such problems can be cast as mixed-integer quadratic optimization problems, where binary variables are used to encode the non-convex step function. First, we derive the convex hull for the epigraph of a quadratic function defined by a rank-one matrix. Using this rank-one convexification, we … Read more

Tight Semidefinite Relaxations for Verifying Robustness of Neural Networks

For verifying the safety of neural networks (NNs), Fazlyab et al. (2019) introduced a semidefinite programming (SDP) approach called DeepSDP. This formulation can be viewed as the dual of the SDP relaxation for a problem formulated as a quadratically constrained quadratic program (QCQP). While SDP relaxations of QCQPs generally provide approximate solutions with some gaps, … Read more

Rounding the Lovasz Theta Function with a Value Function Approximation

The Lovasz theta function is a semidefinite programming (SDP) relaxation for the maximum weighted stable set problem, which is tight for perfect graphs. However, even for perfect graphs, there is no known rounding method guaranteed to extract an optimal stable set from the SDP solution. In this paper, we develop a novel rounding scheme for … Read more

On the Semidefinite Representability of Continuous Quadratic Submodular Minimization With Applications to Moment Problems

We show that continuous quadratic submodular minimization with bounds is solvable in polynomial time using semidefinite programming, and we apply this result to two moment problems arising in distributionally robust optimization and the computation of covariance bounds. Accordingly, this research advances the ongoing study of continuous submodular minimization and opens new application areas therein. ArticleDownload … Read more

Extending Exact Convex Relaxations of Quadratically Constrained Quadratic Programs

A convex relaxation of a quadratically constrained quadratic program (QCQP) is called exact if it has a rank-$1$ optimal solution that corresponds to an optimal solution of the  QCQP. Given a QCQP whose convex relaxation is exact,  this paper investigates the incorporation of additional quadratic inequality constraints under a non-intersecting quadratic constraint condition while maintaining … Read more