On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints

Standard quadratic optimization problems (StQPs) provide a versatile modelling tool in various applications. In this paper, we consider StQPs with a hard sparsity constraint, referred to as sparse StQPs. We focus on various tractable convex relaxations of sparse StQPs arising from a mixed-binary quadratic formulation, namely, the linear optimization relaxation given by the reformulation-linearization technique, … Read more

Affine FR : an effective facial reduction algorithm for semidefinite relaxations of combinatorial problems

\(\) We develop a new method called \emph{affine FR} for recovering Slater’s condition for semidefinite programming (SDP) relaxations of combinatorial optimization (CO) problems. Affine FR is a user-friendly method, as it is fully automatic and only requires a description of the problem. We provide a rigorous analysis of differences between affine FR and the existing … Read more

A real moment-HSOS hierarchy for complex polynomial optimization with real coefficients

This paper proposes a real moment-HSOS hierarchy for complex polynomial optimization problems with real coefficients. We show that this hierarchy provides the same sequence of lower bounds as the complex analogue, yet is much cheaper to solve. In addition, we prove that global optimality is achieved when the ranks of the moment matrix and certain … Read more

Superlinear convergence of an interior point algorithm on linear semi-definite feasibility problems with application to linear matrix inequalities

In the literature, besides the assumption of strict complementarity, superlinear convergence of implementable polynomial-time interior point algorithms using known search directions, namely, the HKM direction, its dual or the NT direction, to solve semi-definite programs (SDPs) is shown by (i) assuming that the given SDP is nondegenerate and making modifications to these algorithms [10], or … Read more

Evolving Scientific Discovery by Unifying Data and Background Knowledge with AI Hilbert

The discovery of scientific formulae that parsimoniously explain natural phenomena and align with existing background theory is a key goal in science. Historically, scientists have derived natural laws by manipulating equations based on existing knowledge, forming new equations, and verifying them experimentally. In recent years, data-driven scientific discovery has emerged as a viable competitor in … Read more

Further Development in Convex Conic Reformulation of Geometric Nonconvex Conic Optimization Problems

\(\) A geometric nonconvex conic optimization problem (COP) was recently proposed by Kim, Kojima and Toh asa unified framework for convex conic reformulation of a class of quadratic optimization problems and polynomial optimization problems. The nonconvex COP minimizes a linear function over the intersection of a nonconvex cone K, a convex subcone J of the … Read more

Dual Conflict Analysis for Mixed-Integer Semidefinite Programs

Conflict analysis originally tried to exploit the knowledge that certain nodes in a relaxation-based branch-and-bound are infeasible. It has been extended to derive valid constraints also from feasible nodes. This paper adapts this approach to mixed-integer semidefinite programs. Using dual solutions, the primal constraints are aggregated and the resulting inequalities can be used at different … Read more

A more efficient reformulation of complex SDP as real SDP

This note proposes a novel reformulation of complex semidefinite programs (SDPs) as real SDPs. As an application, we present an economical reformulation of complex SDP relaxations of complex polynomial optimization problems as real SDPs and derive some further reductions by exploiting structure of the complex SDP relaxations. Various numerical examples demonstrate that our new reformulation … Read more

Provably Faster Gradient Descent via Long Steps

This work establishes provably faster convergence rates for gradient descent in smooth convex optimization via a computer-assisted analysis technique. Our theory allows nonconstant stepsize policies with frequent long steps potentially violating descent by analyzing the overall effect of many iterations at once rather than the typical one-iteration inductions used in most first-order method analyses. We … Read more

On Integrality in Semidefinite Programming for Discrete Optimization

It is well-known that by adding integrality constraints to the semidefinite programming (SDP) relaxation of the max-cut problem, the resulting integer semidefinite program is an exact formulation of the problem. In this paper we show similar results for a wide variety of discrete optimization problems for which SDP relaxations have been derived. Based on a … Read more