Plea for a semidefinite optimization solver in complex numbers

Numerical optimization in complex numbers has drawn much less attention than in real numbers. A widespread opinion is that, since a complex number is a pair of real numbers, the best strategy to solve a complex optimization problem is to transform it into real numbers and to solve the latter by a real number solver. … Read more

D-OPTIMAL DESIGN FOR MULTIVARIATE POLYNOMIAL REGRESSION VIA THE CHRISTOFFEL FUNCTION AND SEMIDEFINITE RELAXATIONS

We present a new approach to the design of D-optimal experiments with multivariate polynomial regressions on compact semi-algebraic design spaces. We apply the moment-sum-of-squares hierarchy of semidefinite programming problems to solve numerically and approximately the optimal design problem. The geometry of the design is recovered with semidefinite programming duality theory and the Christoffel polynomial. Article … Read more

Solving sparse polynomial optimization problems with chordal structure using the sparse, bounded-degree sum-of-squares hierarchy

The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser, Lasserre and Toh [arXiv:1607.01151,2016] constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proven by the authors that the sequence converges to the optimal value. In this paper, we modify the hierarchy to deal with problems containing equality … Read more

A semi-analytical approach for the positive semidefinite Procrustes problem

The positive semidefinite Procrustes (PSDP) problem is the following: given rectangular matrices $X$ and $B$, find the symmetric positive semidefinite matrix $A$ that minimizes the Frobenius norm of $AX-B$. No general procedure is known that gives an exact solution. In this paper, we present a semi-analytical approach to solve the PSDP problem. First, we characterize … Read more

Comparison of Lasserre’s measure–based bounds for polynomial optimization to bounds obtained by simulated annealing

We consider the problem of minimizing a continuous function f over a compact set K. We compare the hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864-885] to bounds that may be obtained from simulated annealing. We show that, when f is a polynomial and K a convex body, … Read more

Computing Weighted Analytic Center for Linear Matrix Inequalities Using Infeasible Newton’s Method

We study the problem of computing weighted analytic center for system of linear matrix inequality constraints. The problem can be solved using the Standard Newton’s method. However, this approach requires that a starting point in the interior point of the feasible region be given or a Phase I problem be solved. We address the problem … Read more

Statistical Inference of Semidefinite Programming

In this paper we consider covariance structural models with which we associate semidefinite programming problems. We discuss statistical properties of estimates of the respective optimal value and optimal solutions when the `true’ covariance matrix is estimated by its sample counterpart. The analysis is based on perturbation theory of semidefinite programming. As an example we consider … Read more

Geometry of 3D Environments and Sum of Squares Polynomials

Motivated by applications in robotics and computer vision, we study problems related to spatial reasoning of a 3D environment using sublevel sets of polynomials. These include: tightly containing a cloud of points (e.g., representing an obstacle) with convex or nearly-convex basic semialgebraic sets, computation of Euclidean distance between two such sets, separation of two convex … Read more

Semidefinite Programming Approach to Russell Measure Model

Throughout its evolution, data envelopment analysis (DEA) has mostly relied on linear programming, particularly because of simple primal-dual relations and the existence of standard software for solving linear programs. Although also non-linear models, such as Russell measure or hyperbolic measure models, have been introduced, their use in applications has been limited mainly because of their … Read more

A Penalty Method for Rank Minimization Problems in Symmetric Matrices

The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal … Read more