Solving SDP Completely with an Interior Point Oracle

We suppose the existence of an oracle which solves any semidefinite programming (SDP) problem satisfying Slater’s condition simultaneously at its primal and dual sides. We note that such an oracle might not be able to directly solve general SDPs even after certain regularization schemes are applied. In this work we fill this gap and show … Read more

Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming

We describe simple and exact duals, and certificates of infeasibility and weak infeasibility in conic linear programming which do not rely on any constraint qualification, and retain most of the simplicity of the Lagrange dual. In particular, some of our infeasibility certificates generalize the row echelon form of a linear system of equations, and the … Read more

A MAX-CUT formulation of 0/1 programs

We consider the linear or quadratic 0/1 program \[P:\quad f^*=\min\{ c^Tx+x^TFx : \:A\,x =\b;\:x\in\{0,1\}^n\},\] for some vectors $c\in R^n$, $b\in Z^m$, some matrix $A\in Z^{m\times n}$ and some real symmetric matrix $F\in R^{n\times n}$. We show that $P$ can be formulated as a MAX-CUT problem whose quadratic form criterion is explicit from the data of … Read more

A Constraint-reduced Algorithm for Semidefinite Optimization Problems using HKM and AHO directions

We develop a new constraint-reduced infeasible predictor-corrector interior point method for semidefinite programming, and we prove that it has polynomial global convergence and superlinear local convergence. While the new algorithm uses HKM direction in predictor step, it adopts AHO direction in corrector step to obtain faster approach to the central path. In contrast to the … Read more

A Constraint-Reduced Algorithm for Semidefinite Optimization Problems with Superlinear Convergence

Constraint reduction is an essential method because the computational cost of the interior point methods can be effectively saved. Park and O’Leary proposed a constraint-reduced predictor-corrector algorithm for semidefinite programming with polynomial global convergence, but they did not show its superlinear convergence. We first develop a constraint-reduced algorithm for semidefinite programming having both polynomial global … Read more

Distributionally robust expectation inequalities for structured distributions

Quantifying the risk of unfortunate events occurring, despite limited distributional information, is a basic problem underlying many practical questions. Indeed, quantifying constraint violation probabilities in distributionally robust programming or judging the risk of financial positions can both be seen to involve risk quantification, notwithstanding distributional ambiguity. In this work we discuss worst-case probability and conditional … Read more

Quantum and classical coin-flipping protocols based on bit-commitment and their point games

We focus on a family of quantum coin-flipping protocols based on quantum bit-commitment. We discuss how the semidefinite programming formulations of cheating strategies can be reduced to optimizing a linear combination of fidelity functions over a polytope. These turn out to be much simpler semidefinite programs which can be modelled using second-order cone programming problems. … Read more

Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

We show that for any positive integer $d$, there are families of switched linear systems—in fixed dimension and defined by two matrices only—that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree $\leq d$, or (ii) a polytopic Lyapunov function with $\leq d$ facets, or (iii) a piecewise … Read more

New bounds for the max-hBccut and chromatic number of a graph

We consider several semidefinite programming relaxations for the max-$k$-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-$k$-cut when $k>2$ that is applicable to … Read more

Exact solutions to Super Resolution on semi-algebraic domains in higher dimensions

We investigate the multi-dimensional Super Resolution problem on closed semi-algebraic domains for various sampling schemes such as Fourier or moments. We present a new semidefinite programming (SDP) formulation of the l1-minimization in the space of Radon measures in the multi-dimensional frame on semi-algebraic sets. While standard approaches have focused on SDP relaxations of the dual … Read more