Expander Graph and Communication-Efficient Decentralized Optimization

In this paper, we discuss how to design the graph topology to reduce the communication complexity of certain algorithms for decentralized optimization. Our goal is to minimize the total communication needed to achieve a prescribed accuracy. We discover that the so-called expander graphs are near-optimal choices. We propose three approaches to construct expander graphs for … Read more

Decentralized Consensus Optimization with Asynchrony and Delays

We propose an asynchronous, decentralized algorithm for consensus optimization. The algorithm runs over a network in which the agents communicate with their neighbors and perform local computation. In the proposed algorithm, each agent can compute and communicate independently at different times, for different durations, with the information it has even if the latest information from … Read more

Special cases of the quadratic shortest path problem

The quadratic shortest path problem (QSPP) is the problem of finding a path in a digraph such that the sum of weights of arcs and the sum of interaction costs over all pairs of arcs on the path is minimized. We first consider a variant of the QSPP known as the adjacent QSPP. It was … Read more

Complete mixed integer linear programming formulations for modularity density based clustering

Modularity density maximization is a clustering method that improves some issues of the commonly-used modularity maximization approach. Recently, some Mixed-Integer Linear Programming (MILP) reformulations have been proposed in the literature for the modularity density maximization problem, but they require as input the solution of a set of auxiliary binary Non-Linear Programs (NLPs). These can become … Read more

A Branch-and-Price Algorithm for the Vehicle Routing Problem with Roaming Delivery Locations

We study the vehicle routing problem with roaming delivery locations in which the goal is to find a least-cost set of delivery routes for a fleet of capacitated vehicles and in which a customer order has to be delivered to the trunk of the customer’s car during the time that the car is parked at … Read more

Exact algorithms for bi-objective ring tree problems with reliability measures

We introduce bi-objective models for ring tree network design with a focus on network reliability within telecommunication applications. Our approaches generalize the capacitated ring tree problem (CRTP) which asks for a partially reliable topology that connects customers with different security requirements to a depot node by combined ring and tree graphs. While the CRTP aims … Read more

A Benders decomposition based framework for solving cable trench problems

In this work, we present an algorithmic framework based on Benders decomposition for the Capacitated p-Cable Trench Problem with Covering. We show that our approach can be applied to most variants of the Cable Trench Problem (CTP) that have been considered in the literature. The proposed algorithm is augmented with a stabilization procedure to accelerate … Read more

Improving Benders decomposition via a non-linear cut selection procedure

A non-linear lifting procedure is proposed to generate high density Benders cuts. The new denser cuts cover more master problem variables than traditional Benders cuts, shortening the required number of iterations to reach optimality, and speeding up the Benders decomposition algorithm. To lessen the intricacy stemmed from the non-linearity, a simple outer approximation lineariza- tion … Read more

A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems

In this work we present a branch-and-bound (B&B) framework for the asymmetric prize-collecting Steiner tree problem (APCSTP). Several well-known network design problems can be transformed to the APCSTP, including the Steiner tree problem (STP), prize-collecting Steiner tree problem (PCSTP), maximum-weight connected subgraph problem (MWCS) and the node-weighted Steiner tree problem (NWSTP). The main component of … Read more

Lagrangian and Branch-and-Cut Approaches for Upgrading Spanning Tree Problems

Problems aiming at finding budget constrained optimal upgrading schemes to improve network performance have received attention over the last two decades. In their general setting, these problems consist of designing a network and, simultaneously, allocating (limited) upgrading resources in order to enhance the performance of the designed network. In this paper we address two particular … Read more