Data-Driven Reliable Facility Location Design

We study the reliable (uncapacitated) facility location (RFL) problem in a data-driven environment where historical observations of random demands and disruptions are available. Owing to the combinatorial optimization nature of the RFL problem and the mixed-binary randomness of parameters therein, the state-of-the-art RFL models applied to the data-driven setting either suggest overly conservative solutions, or … Read more

A Survey on Optimization Studies of Group Centrality Metrics

Centrality metrics have become a popular concept in network science and optimization. Over the years, centrality has been used to assign importance and identify influential elements in various settings, including transportation, infrastructure, biological, and social networks, among others. That said, most of the literature has focused on nodal versions of centrality. Recently, group counterparts of … Read more

Solving Various Classes of Arc Routing Problems with a Memetic Algorithm-based Framework

Arc routing problems are combinatorial optimization problems that have many real-world applications, such as mail delivery, snow plowing, and waste collection. Various variants of this problem are available, as well as algorithms intended to solve them heuristically or exactly. Presented here is a generic algorithmic framework that can be applied to a variety of arc … Read more

Robust Service Network Design under Travel Time Uncertainty: Formulations and Exact Solutions

We study the continuous-time service network design problem (CTSNDP) under travel time uncertainty, aiming to design a transportation service network along a continuous-time planning horizon, with robust operational efficiency even in the presence of travel time deviations. Incorporating travel time uncertainty holds a great practical value. However, it poses a significant challenge in both problem … Read more

Exact and Heuristic Solution Approaches for Busy Time Minimization in Temporal Bin Packing

Given a set of jobs (or items), each of which being characterized by its resource demand and its lifespan, and a sufficiently large number of identical servers (or bins), the busy time minimization problem (BTMP) requires to find a feasible schedule (i.e., a jobs-to-servers assignment) having minimum overall power-on time. Although being linked to the … Read more

K-Shortest Simple Paths Using Biobjective Path Search

In this paper we introduce a new algorithm for the k-Shortest Simple Paths (k-SSP) problem with an asymptotic running time matching the state of the art from the literature. It is based on a black-box algorithm due to Roddity and Zwick that solves at most 2k instances of the Second Shortest Simple Path (2-SSP) problem … Read more

A Bilevel Optimization Approach for a Class of Combinatorial Problems with Disruptions and Probing

We consider linear combinatorial optimization problems under uncertain disruptions that increase the cost coefficients of the objective function. A decision-maker, or planner, can invest resources to probe the components (i.e., the coefficients) in order to learn their disruption status. In the proposed probing optimization problem, the planner, knowing just the disruptions’ probabilities, selects which components … Read more

Adaptive Consensus: A network pruning approach for decentralized optimization

We consider network-based decentralized optimization problems, where each node in the network possesses a local function and the objective is to collectively attain a consensus solution that minimizes the sum of all the local functions. A major challenge in decentralized optimization is the reliance on communication which remains a considerable bottleneck in many applications. To … Read more

A Polynomial Algorithm for the Lossless Battery Charging Problem

This study presents a polynomial time algorithm to solve the lossless battery charging problem. In this problem the optimal charging and discharging schedules are chosen to maximize total profit. Traditional solution approaches have relied on either approximations or exponential algorithms. By studying the optimality conditions of this problem, we are able to reduce it to … Read more

Playing Stackelberg security games in perfect formulations

Protecting critical infrastructure from intentional damage requires foreseeing the strategies of possible attackers. The problem faced by the defender of such infrastructure can be formulated as a Stackelberg security game. A defender must decide what specific targets to protect with limited resources, maximizing their expected utility (e.g., minimizing damage value) and considering that a second … Read more