A globally trust-region LP-Newton method for nonsmooth functions under the Hölder metric subregularity

We describe and analyse a globally convergent algorithm to find a possible nonisolated zero of a piecewise smooth mapping over a polyhedral set, such formulation includes Karush-Kuhn-Tucker (KKT) systems, variational inequalities problems, and generalized Nash equilibrium problems. Our algorithm is based on a modification of the fast locally convergent Linear Programming (LP)-Newton method with a … Read more

A Unifying Framework for Sparsity Constrained Optimization

In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then … Read more

Price Optimization with Practical Constraints

In this paper, we study a retailer price optimization problem which includes the practical constraints: maximum number of price changes and minimum amount of price change (if a change is recommended). We provide a closed-form formula for the Euclidean projection onto the feasible set defined by these two constraints, based on which a simple gradient … Read more

FrankWolfe.jl: a high-performance and flexible toolbox for Frank-Wolfe algorithms and Conditional Gradients

We present FrankWolfe.jl, an open-source implementation of several popular Frank-Wolfe and Conditional Gradients variants for first-order constrained optimization. The package is designed with flexibility and high-performance in mind, allowing for easy extension and relying on few assumptions regarding the user-provided functions. It supports Julia’s unique multiple dispatch feature, and interfaces smoothly with generic linear optimization … Read more

Algorithms for Difference-of-Convex (DC) Programs Based on Difference-of-Moreau-Envelopes Smoothing

In this paper we consider minimization of a difference-of-convex (DC) function with and without linear constraints. We first study a smooth approximation of a generic DC function, termed difference-of-Moreau-envelopes (DME) smoothing, where both components of the DC function are replaced by their respective Moreau envelopes. The resulting smooth approximation is shown to be Lipschitz differentiable, … Read more

Penetration depth between two convex polyhedra: An efficient global optimization approach

During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, … Read more

Robust Price Optimization of Multiple Products under Interval Uncertainties

In this paper, we solve the multiple product price optimization problem under interval uncertainties of the price sensitivity parameters in the demand function. The objective of the price optimization problem is to maximize the overall revenue of the firm where the decision variables are the prices of the products supplied by the firm. We propose … Read more

Active-set identification with complexity guarantees of an almost cyclic 2-coordinate descent method with Armijo line search

In this paper, it is established finite active-set identification of an almost cyclic 2-coordinate descent method for problems with one linear coupling constraint and simple bounds. First, general active-set identification results are stated for non-convex objective functions. Then, under convexity and a quadratic growth condition (satisfied by any strongly convex function), complexity results on the … Read more

A Penalty-free Infeasible Approach for a Class of Nonsmooth Optimization Problems over the Stiefel Manifold

Transforming into an exact penalty function model with convex compact constraints yields efficient infeasible approaches for optimization problems with orthogonality constraints. For smooth and L21-norm regularized cases, these infeasible approaches adopt simple and orthonormalization-free updating schemes and show high efficiency in some numerical experiments. However, to avoid orthonormalization while enforcing the feasibility of the final … Read more

Controllable Transmission Networks UnderDemand Uncertainty with Modular FACTS

The transmission system operators (TSOs) are responsible to provide secure and efficient access to the transmission system for all stakeholders. This task is gradually getting challenging due to the demand growth, demand uncertainty, rapid changes in generation mix, and market policies. Traditionally, the TSOs try to maximize the technical performance of the transmission network via … Read more