SOS approximation of polynomials nonnegative on a real algebraic set

Let $V\subset R^n$ be a real algebraic set described by finitely many polynomials equations $g_j(x)=0,j\in J$, and let $f$ be a real polynomial, nonnegative on $V$. We show that for every $\epsilon>0$, there exist nonnegative scalars $\{\lambda_j\}_{j\in J}$ such that, for all $r$ sufficiently large, $f+\epsilon\theta_r+\sum_{j\in J} \lambda_j g_j^2$ is a sum of squares. Here, … Read more

A sum of squares approximation of nonnegative polynomials

We show that every real nonnegative polynomial $f$ can be approximated as closely as desired (in the $l_1$-norm of its coefficient vector) by a sequence of polynomials $\{f_\epsilon\}$ that are sums of squares. The novelty is that each $f_\epsilon$ has a simple and explicit form in terms of $f$ and $\epsilon$. Citation SIAM J. Optimization … Read more

A Homogeneous Model for Mixed Complementarity Problems over Symmetric Cones

In this paper, we propose a homogeneous model for solving monotone mixed complementarity problems over symmetric cones, by extending the results in \cite{YOSHISE04} for standard form of the problems. We show that the extended model inherits the following desirable features: (a) A path exists, is bounded and has a trivial starting point without any regularity … Read more

A Note on Multiobjective Optimization and Complementarity Constraints

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding an optimal representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise … Read more

Blind Source Separation using Relative Newton Method combined with Smoothing Method of Multipliers

We study a relative optimization framework for quasi-maximum likelihood blind source separation and relative Newton method as its particular instance. The structure of the Hessian allows its fast approximate inversion. In the second part we present Smoothing Method of Multipliers (SMOM) for minimization of sum of pairwise maxima of smooth functions, in particular sum of … Read more

Variational Two-electron Reduced Density Matrix Theory for Many-electron Atoms and Molecules: Implementation of the Spin- and Symmetry-adapted T2 Condition through First-order Semidefinite Programming

The energy and properties of a many-electron atom or molecule may be directly computed from a variational optimization of a two-electron reduced density matrix (2-RDM) that is constrained to represent many-electron quantum systems. In this paper we implement a variational 2-RDM method with a representability constraint, known as the $T_2$ condition. The optimization of the … Read more

Iterative Solution of Augmented Systems Arising in Interior Methods

Iterative methods are proposed for certain augmented systems of linear equations that arise in interior methods for general nonlinear optimization. Interior methods define a sequence of KKT equations that represent the symmetrized (but indefinite) equations associated with Newton’s method for a point satisfying the perturbed optimality conditions. These equations involve both the primal and dual … Read more

A New Low Rank Quasi-Newton Update Scheme for Nonlinear Programming

A new quasi-Newton scheme for updating a low rank positive semi-definite Hessian approximation is described, primarily for use in sequential quadratic programming methods for nonlinear programming. Where possible the symmetric rank one update formula is used, but when this is not possible a new rank two update is used, which is not in the Broyden … Read more

Geometry of Sample Sets in Derivative Free Optimization. Part II: Polynomial Regression and Underdetermined Interpolation

In the recent years, there has been a considerable amount of work in the development of numerical methods for derivative free optimization problems. Some of this work relies on the management of the geometry of sets of sampling points for function evaluation and model building. In this paper, we continue the work developed in [Conn, … Read more

A primal-infeasible interior point algorithm for linearly constrained convex programming

In the paper a primal-infeasible interior point algorithm is proposed for linearly constrained convex programming. The starting point is any positive primal-infeasible dual-feasible point in a large region. The method maintains positivity of the iterates which point satisfies primal-infeasible dual-feasible point. At each iterates it requires to solve approximately a nonlinear system. It is shown … Read more