Model-Based Derivative-Free Optimization Methods and Software

This thesis studies derivative-free optimization (DFO), particularly model-based methods and software. These methods are motivated by optimization problems for which it is impossible or prohibitively expensive to access the first-order information of the objective function and possibly the constraint functions. In particular, this thesis presents PDFO, a package we develop to provide both MATLAB and Python … Read more

PDFO: A Cross-Platform Package for Powell’s Derivative-Free Optimization Solvers

The late Professor M. J. D. Powell devised five trust-region derivative-free optimization methods, namely COBYLA, UOBYQA, NEWUOA, BOBYQA, and LINCOA. He also carefully implemented them into publicly available solvers, which are renowned for their robustness and efficiency. However, the solvers were implemented in Fortran 77 and hence may not be easily accessible to some users. … Read more

An Optimal Interpolation Set for Model-Based Derivative-Free Optimization Methods

This paper demonstrates the optimality of an interpolation set employed in derivative-free trust-region methods. This set is optimal in the sense that it minimizes the constant of well-poisedness in a ball centred at the starting point. It is chosen as the default initial interpolation set by many derivative-free trust-region methods based on underdetermined quadratic interpolation, … Read more

On the Optimization Landscape of Burer-Monteiro Factorization: When do Global Solutions Correspond to Ground Truth?

In low-rank matrix recovery, the goal is to recover a low-rank matrix, given a limited number of linear and possibly noisy measurements. Low-rank matrix recovery is typically solved via a nonconvex method called Burer-Monteiro factorization (BM). If the rank of the ground truth is known, BM is free of sub-optimal local solutions, and its true solutions … Read more

Yet another fast variant of Newton’s method for nonconvex optimization

A second-order algorithm is proposed for minimizing smooth nonconvex functions that alternates between regularized Newton and negative curvature steps. In most cases, the Hessian matrix is regularized with the square root of the current gradient and an additional term taking moderate negative curvature into account, a negative curvature step being taken only exceptionnally. As a … Read more

A Sequential Quadratic Programming Method for Optimization with Stochastic Objective Functions, Deterministic Inequality Constraints and Robust Subproblems

In this paper, a robust sequential quadratic programming method of Burke and Han (Math Programming, 1989)  for constrained optimization is generalized to problem with stochastic objective function, deterministic equality and inequality constraints. A stochastic line search scheme in Paquette and Scheinberg (SIOPT, 2020) is employed to globalize the steps. We show that in the case … Read more

Multilevel Objective-Function-Free Optimization with an Application to Neural Networks Training

A class of multi-level algorithms for unconstrained nonlinear optimization is presented which does not require the evaluation of the objective function. The class contains the momentum-less AdaGrad method as a particular (single-level) instance. The choice of avoiding the evaluation of the objective function is intended to make the algorithms of the class less sensitive to … Read more

MGProx: A nonsmooth multigrid proximal gradient method with adaptive restriction for strongly convex optimization

We study the combination of proximal gradient descent with multigrid for solving a class of possibly nonsmooth strongly convex optimization problems. We propose a multigrid proximal gradient method called MG-Prox, which accelerates the proximal gradient method by multigrid, based on using hierarchical information of the optimization problem. MGProx applies a newly introduced adaptive restriction operator … Read more

Projection free methods on product domains

Projection-free block-coordinate methods avoid high computational cost per iteration and at the same time exploit the particular problem structure of product domains. Frank-Wolfe-like approaches rank among the most popular ones of this type. However, as observed in the literature, there was a gap between the classical Frank-Wolfe theory and the block-coordinate case. Moreover, most of … Read more

Force-Controlled Pose Optimization and Trajectory Planning for Chained Stewart Platforms

We study optimization methods applied to minimizing forces for poses and movements of chained Stewart platforms (SPs) that we call an “Assembler” Robot. These chained SPs are parallel mechanisms that are stronger, stiffer, and more precise, on average, than their serial counterparts at the cost of a smaller range of motion. Linking these units in … Read more