Fast implementation for semidefinite programs with positive matrix completion

Solving semidefinite programs (SDP) in a short time is the key to managing various mathematical optimization problems in practical time. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable matrices, and it shrinks the computation time. In this paper, we propose a new factorization based on the … Read more

PEBBL: An Object-Oriented Framework for Scalable Parallel Branch and Bound

PEBBL is a C++ class library implementing the underlying operations needed to support a wide variety of branch-and-bound algorithms in a message-passing parallel computing environment. Deriving application-speci c classes from PEBBL, one may create parallel branch-and-bound applications through a process focused on the unique aspects of the application, while relying on PEBBL for generic aspects of … Read more

Smooth minimization of nonsmooth functions with parallel coordinate descent methods

We study the performance of a family of randomized parallel coordinate descent methods for minimizing the sum of a nonsmooth and separable convex functions. The problem class includes as a special case L1-regularized L1 regression and the minimization of the exponential loss (“AdaBoost problem”). We assume the input data defining the loss function is contained … Read more

Large-scale optimization with the primal-dual column generation method

The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation. A reduction in the number of calls … Read more

Rational sums of hermitian squares of free noncommutative polynomials

In this paper we consider polynomials in noncommuting variables that admit sum of hermitian squares and commutators decompositions. We recall algorithms for finding decompositions of this type that are based on semidefinite programming. The main part of the article investigates how to find such decomposition with rational coefficients if the original polynomial has rational coefficients. … Read more

A scenario decomposition algorithm for 0-1 stochastic programs

We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and … Read more

Some notes on applying computational divided differencing in optimization

We consider the problem of accurate computation of the finite difference $f(\x+\s)-f(\x)$ when $\Vert\s\Vert$ is very small. Direct evaluation of this difference in floating point arithmetic succumbs to cancellation error and yields 0 when $\s$ is sufficiently small. Nonetheless, accurate computation of this finite difference is required by many optimization algorithms for a “sufficient decrease” … Read more

A Parallel Bundle Framework for Asynchronous Subspace Optimisation of Nonsmooth Convex Functions

An algorithmic framework is presented for optimising general convex functions by non synchronised parallel processes. Each process greedily picks a suitable adaptive subset of coordinates and runs a bundle method on a corresponding restricted problem stopping whenever a descent step is encountered or predicted decrease is reduced sufficiently. No prior knowledge on the dependencies between … Read more

Using diversification, communication and parallelism to solve mixed-integer linear programs

Performance variability of modern mixed-integer programming solvers and possible ways of exploiting this phenomenon present an interesting opportunity in the development of algorithms to solve mixed-integer linear programs (MILPs). We propose a framework using multiple branch-and-bound trees to solve MILPs while allowing them to share information in a parallel execution. We present computational results on … Read more

Computing in Operations Research using Julia

The state of numerical computing is currently characterized by a divide between highly efficient yet typically cumbersome low-level languages such as C, C++, and Fortran and highly expressive yet typically slow high-level languages such as Python and MATLAB. This paper explores how Julia, a modern programming language for numerical computing which claims to bridge this … Read more