Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods

We consider the superiorization methodology, which can be thought of as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to the objective function value) to one returned by a feasibility-seeking … Read more

Parallel Large-Neighborhood Search Techniques for LNG Inventory Routing

Liquefied natural gas (LNG) is estimated to account for a growing portion of the world natural gas trade. For profitable operation of a capital intensive LNG project, it is necessary to optimally design various aspects of the supply chain associated with it. Of particular interest is optimization of ship schedules and the inventories on the … Read more

Parallel Algorithms for Big Data Optimization

We propose a decomposition framework for the parallel optimization of the sum of a differentiable function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss-Seidel (i.e., sequential) ones, as … Read more

Memory-Aware Parallelized RLT3 for Solving Quadratic Assignment Problems

We present a coarse-grain (outer-loop) parallel implementation of RLT1/2/3 (Level 1, 2, and 3 Reformulation and Linearization Technique—in that order) bound calculations for the QAP within a branch-and-bound procedure. For a search tree node of size S, each RLT3 and RLT2 bound calculation iteration is parallelized S ways, with each of S processors performing O(S5) … Read more

Fast implementation for semidefinite programs with positive matrix completion

Solving semidefinite programs (SDP) in a short time is the key to managing various mathematical optimization problems in practical time. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable matrices, and it shrinks the computation time. In this paper, we propose a new factorization based on the … Read more

PEBBL: An Object-Oriented Framework for Scalable Parallel Branch and Bound

PEBBL is a C++ class library implementing the underlying operations needed to support a wide variety of branch-and-bound algorithms in a message-passing parallel computing environment. Deriving application-speci c classes from PEBBL, one may create parallel branch-and-bound applications through a process focused on the unique aspects of the application, while relying on PEBBL for generic aspects of … Read more

Smooth minimization of nonsmooth functions with parallel coordinate descent methods

We study the performance of a family of randomized parallel coordinate descent methods for minimizing the sum of a nonsmooth and separable convex functions. The problem class includes as a special case L1-regularized L1 regression and the minimization of the exponential loss (“AdaBoost problem”). We assume the input data defining the loss function is contained … Read more

A scenario decomposition algorithm for 0-1 stochastic programs

We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and … Read more

A Parallel Bundle Framework for Asynchronous Subspace Optimisation of Nonsmooth Convex Functions

An algorithmic framework is presented for optimising general convex functions by non synchronised parallel processes. Each process greedily picks a suitable adaptive subset of coordinates and runs a bundle method on a corresponding restricted problem stopping whenever a descent step is encountered or predicted decrease is reduced sufficiently. No prior knowledge on the dependencies between … Read more

Using diversification, communication and parallelism to solve mixed-integer linear programs

Performance variability of modern mixed-integer programming solvers and possible ways of exploiting this phenomenon present an interesting opportunity in the development of algorithms to solve mixed-integer linear programs (MILPs). We propose a framework using multiple branch-and-bound trees to solve MILPs while allowing them to share information in a parallel execution. We present computational results on … Read more