Complexity Aspects of Fundamental Questions in Polynomial Optimization

In this thesis, we settle the computational complexity of some fundamental questions in polynomial optimization. These include the questions of (i) finding a local minimum, (ii) testing local minimality of a candidate point, and (iii) deciding attainment of the optimal value. Our results characterize the complexity of these three questions for all degrees of the … Read more

A Tractable Multi-Leader Multi-Follower Peak-Load-Pricing Model with Strategic Interaction

While single-level Nash equilibrium problems are quite well understood nowadays, less is known about multi-leader multi-follower games. However, these have important applications, e.g., in the analysis of electricity and gas markets, where often a limited number of firms interacts on various subsequent markets. In this paper, we consider a special class of two-level multi-leader multi-follower … Read more

No-regret Learning in Price Competitions under Consumer Reference Effects

We study long-run market stability for repeated price competitions between two firms, where consumer demand depends on firms’ posted prices and consumers’ price expectations called reference prices. Consumers’ reference prices vary over time according to a memory-based dynamic, which is a weighted average of all historical prices. We focus on the setting where firms are … Read more

Characterization of an Anomalous Behavior of a Practical Smoothing Technique

A practical smoothing method was analyzed and tested against state-of-the-art solvers for some non-smooth optimization problems in [BSS20a; BSS20b]. This method can be used to smooth the value functions and solution mappings of fully parameterized convex problems under mild conditions. In general, the smoothing of the value function lies from above the true value function … Read more

Mixed Integer Bilevel Optimization with k-optimal Follower: A Hierarchy of Bounds

We consider mixed integer bilevel linear optimization problems in which the decision variables of the lower-level (follower’s) problem are all binary. We propose a general modeling and solution framework motivated by the practical reality that in a Stackelberg game, the follower does not always solve their optimization problem to optimality. They may instead implement a … Read more

Games with joint chance constraints under mixture distributions

We consider an n-player non-cooperative game where each player has expected value payoff function and her strategy set is defined by a joint chance constraint. The random constraint vectors are independent. We propose a subset of probability distributions from elliptical family of distributions. We consider the case when the probability distribution of each random constraint … Read more

Equivalent second-order cone programs for distributionally robust zero-sum games

We consider a two player zero-sum game with stochastic linear constraints. The probability distributions of the vectors associated with the constraints are partially known. The available information with respect to the distribution is based mainly on the two first moments. In this vein, we formulate the stochastic linear constraints as distributionally robust chance constraints. We … Read more

A Unified Framework for Multistage and Multilevel Mixed Integer Linear Optimization

We introduce a unified framework for the study of multilevel mixed integer linear optimization problems and multistage stochastic mixed integer linear optimization problems with recourse. The framework highlights the common mathematical structure of the two problems and allows for the development of a common algorithmic framework. Focusing on the two-stage case, we investigate, in particular, … Read more

A Framework for Generalized Benders’ Decomposition and Its Application to Multilevel Optimization

We describe an algorithmic framework generalizing the well-known framework originally introduced by Benders. We apply this framework to several classes of optimization problems that fall under the broad umbrella of multilevel/multistage mixed integer linear optimization problems. The development of the abstract framework and its application to this broad class of problems provides new insights and … Read more

The Magic of Nash Social Welfare in Optimization: Do Not Sum, Just Multiply!

In this paper, we explain some key challenges when dealing with a single/multi-objective optimization problem in practice. To overcome these challenges, we present a mathematical program that optimizes a Nash Social Welfare function. We refer to this mathematical program as the Nash Social Welfare Program (NSWP). An interesting property of the NSWP is that it … Read more