The Value of Randomized Strategies in Distributionally Robust Risk Averse Network Interdiction Games

Conditional Value at Risk (CVaR) is widely used to account for the preferences of a risk-averse agent in the extreme loss scenarios. To study the effectiveness of randomization in interdiction games with an interdictor that is both risk and ambiguity averse, we introduce a distributionally robust network interdiction game where the interdictor randomizes over the … Read more

Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems

In this paper we address a game theory problem arising in the context of network security. In traditional game theory problems, given a defender and an attacker, one searches for mixed strategies which minimize a linear payoff functional. In the problem addressed in this paper an additional quadratic term is added to the minimization problem. … Read more

Risk-Averse Bargaining in a Stochastic Optimization Context

Problem definition: Bargaining situations are ubiquitous in economics and management. We consider the problem of bargaining for a fair ex-ante distribution of random profits arising from a cooperative effort of a fixed set of risk-averse agents. Our approach integrates optimal managerial decision making into bargaining situations with random outcomes and explicitly models the impact of … Read more

Games with distributionally robust joint chance constraints

This paper studies an n-player non-cooperative game with strategy sets defined by stochastic linear constraints. The stochastic constraints of each player are jointly satisfied with a probability exceeding a given threshold. We consider the case where the row vectors defining the constraints are independent random vectors whose probability distributions are not completely known and belong … Read more

Gaddum’s test for symmetric cones

A real symmetric matrix “A” is copositive if the inner product if Ax and x is nonnegative for all x in the nonnegative orthant. Copositive programming has attracted a lot of attention since Burer showed that hard nonconvex problems can be formulated as completely-positive programs. Alas, the power of copositive programming is offset by its … Read more

Optimal time-and-level-of-use price setting for an energy retailer

This paper presents a novel price setting optimization problem for an energy retailer in the smart grid. In this framework the retailer buys energy from multiple generators via bilateral contracts, and sells it to a population of smart homes using Time-and-Level-of-Use prices (TLOU). TLOU is an energy price structure recently introduced in the literature, where … Read more

Exact Solution Approaches for Integer Linear Generalized Maximum Multiplicative Programs Through the Lens of Multi-objective Optimization

We study a class of single-objective nonlinear optimization problems, the so-called Integer Linear Generalized Maximum Multiplicative Programs (IL-GMMP). This class of optimization problems has a significant number of applications in different fields of study including but not limited to game theory, systems reliability, and conservative planning. An IL-GMMP can be reformulated as a mixed integer … Read more

Assessment of Climate Agreements over the Long Term with Strategic Carbon Dioxyde Removal Activity

In this paper we extend a game theoretic meta-model used to assess the future of Paris agreement to the time horizon 2100 and we include in the strategic decisions of the negotiating coalitions the use of Carbon Dioxyde Removal (CDR) technologies. The meta-game model is calibrated through statistical emulation of GEMINI-E3, a world computable general … Read more

Γ-Robust Linear Complementarity Problems

Complementarity problems are often used to compute equilibria made up of specifically coordinated solutions of different optimization problems. Specific examples are game-theoretic settings like the bimatrix game or energy market models like for electricity or natural gas. While optimization under uncertainties is rather well-developed, the field of equilibrium models represented by complementarity problems under uncertainty … Read more

The Noncooperative Fixed Charge Transportation Problem

We introduce the noncooperative fixed charge transportation problem (NFCTP), which is a game-theoretic extension of the fixed charge transportation problem. In the NFCTP, competing players solve coupled fixed charge transportation problems simultaneously. Three versions of the NFCTP are discussed and compared, which differ in their treatment of shared social costs. This may be used from … Read more