Branch-and-cut-and-price for the robust capacitated vehicle routing problem with knapsack uncertainty

We examine the robust counterpart of the classical Capacitated Vehicle Routing Problem (CVRP). We consider two types of uncertainty sets for the customer demands: the classical budget polytope introduced by Bertsimas and Sim (2003), and a partitioned budget polytope proposed by Gounaris et al. (2013). We show that using the set-partitioning formulation it is possible … Read more

On robust fractional 0-1 programming

We study single- and multiple-ratio robust fractional 0-1 programming problems (RFPs). In particular, this work considers RFPs under a wide-range of disjoint and joint uncertainty sets, where the former implies separate uncertainty sets for each numerator and denominator, and the latter accounts for different forms of inter-relatedness between them. First, we demonstrate that, unlike the … Read more

Improved Decision Rule Approximations for Multi-Stage Robust Optimization via Copositive Programming

We study decision rule approximations for generic multi-stage robust linear optimization problems. We consider linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and consider quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP-hard but … Read more

The Distributionally Robust Chance Constrained Vehicle Routing Problem

We study a variant of the capacitated vehicle routing problem (CVRP), which asks for the cost-optimal delivery of a single product to geographically dispersed customers through a fleet of capacity-constrained vehicles. Contrary to the classical CVRP, which assumes that the customer demands are deterministic, we model the demands as a random vector whose distribution is … Read more

Robust Multidimensional Pricing: Separation without Regret

We study a robust monopoly pricing problem with a minimax regret objective, where a seller endeavors to sell multiple goods to a single buyer, only knowing that the buyer’s values for the goods range over a rectangular uncertainty set. We interpret this pricing problem as a zero-sum game between the seller, who chooses a selling … Read more

Strictly and Γ-Robust Counterparts of Electricity Market Models: Perfect Competition and Nash-Cournot Equilibria

This paper mainly studies two topics: linear complementarity problems for modeling electricity market equilibria and optimization under uncertainty. We consider both perfectly competitive and Nash–Cournot models of electricity markets and study their robustifications using strict robustness and the Γ-approach. For three out of the four combinations of economic competition and robustification, we derive algorithmically tractable … Read more

Data-Driven Distributionally Robust Chance-Constrained Optimization with Wasserstein Metric

We study distributionally robust chance-constrained programming (DRCCP) optimization problems with data-driven Wasserstein ambiguity sets. The proposed algorithmic and reformulation framework applies to distributionally robust optimization problems subjected to individual as well as joint chance constraints, with random right-hand side and technology vector, and under two types of uncertainties, called uncertain probabilities and continuum of realizations. … Read more

On the Optimality of Affine Policies for Budgeted Uncertainty Sets

In this paper, we study the performance of affine policies for two-stage adjustable robust optimization problem with uncertain right hand side belonging to a budgeted uncertainty set. This is an important class of uncertainty sets widely used in practice where we can specify a budget on the adversarial deviations of the uncertain parameters from the … Read more

Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective

In this paper, we focus on a subclass of quadratic optimization problems, that is, disjoint bilinear optimization problems. We first show that disjoint bilinear optimization problems can be cast as two-stage robust linear optimization problems with fixed-recourse and right-hand-side uncertainty, which enables us to apply robust optimization techniques to solve the resulting problems. To this … Read more

Tractable approximation of hard uncertain optimization problems

In many optimization problems uncertain parameters appear in a convex way, which is problematic as common techniques can only handle concave uncertainty. In this paper, we provide a systematic way to construct conservative approximations to such problems. Specifically, we reformulate the original problem as an adjustable robust optimization problem in which the nonlinearity of the … Read more