Decomposition-based approaches for a class of two-stage robust binary optimization problems

In this paper, we study a class of two-stage robust binary optimization problems with objective uncertainty where recourse decisions are restricted to be mixed-binary. For these problems, we present a deterministic equivalent formulation through the convexification of the recourse feasible region. We then explore this formulation under the lens of a relaxation, showing that the … Read more

Distributionally robust chance constrained geometric optimization

This paper discusses distributionally robust geometric programs with individual and joint chance constraints. Seven groups of uncertainty sets are considered: uncertainty sets with first two order moments information, uncertainty sets constrained by the Kullback-Leibler divergence distance with a normal reference distribution or a discrete reference distribution, uncertainty sets with known first moments or known first … Read more

Tight tail probability bounds for distribution-free decision making

Chebyshev’s inequality provides an upper bound on the tail probability of a random variable based on its mean and variance. While tight, the inequality has been criticized for only being attained by pathological distributions that abuse the unboundedness of the underlying support and are not considered realistic in many applications. We provide alternative tight lower … Read more

Data-Driven Distributionally Robust Appointment Scheduling over Wasserstein Balls

We study a single-server appointment scheduling problem with a fixed sequence of appointments, for which we must determine the arrival time for each appointment. We specifically examine two stochastic models. In the first model, we assume that all appointees show up at the scheduled arrival times yet their service durations are random. In the second … Read more

Adjustable robust treatment-length optimization in radiation therapy

Traditionally, optimization of radiation therapy (RT) treatment plans has been done before the initiation of RT course, using population-wide estimates for patients’ response to therapy. However, recent technological advancements have enabled monitoring individual patient response during the RT course, in the form of biomarkers. Although biomarker data remains subject to substantial uncertainties, information extracted from … Read more

An exact algorithm for robust influence maximization

We propose a Branch-and-Cut algorithm for the robust influence maximization problem. The influence maximization problem aims to identify, in a social network, a set of given cardinality comprising actors that are able to influence the maximum number of other actors. We assume that the social network is given in the form of a graph with … Read more

Globalized Robust Optimization with Gamma-Uncertainties

Globalized robust optimization has been proposed as a generalization of the standard robust optimization framework in order to allow for a controlled decrease in protection depending on the distance of the realized scenario from the predefined uncertainty set. In this work, we specialize the notion of globalized robustness to Gamma-uncertainty in order to extend its … Read more

Distributionally Robust Partially Observable Markov Decision Process with Moment-based Ambiguity

We consider a distributionally robust Partially Observable Markov Decision Process (DR-POMDP), where the distribution of the transition-observation probabilities is unknown at the beginning of each decision period, but their realizations can be inferred using side information at the end of each period after an action being taken. We build an ambiguity set of the joint … Read more

Confidence Regions in Wasserstein Distributionally Robust Estimation

Wasserstein distributionally robust optimization (DRO) estimators are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance (in a Wasserstein sense) from the underlying empirical measure. While motivated by the need to identify model parameters (or) decision choices that are … Read more

Sharing the Value-at-Risk under Distributional Ambiguity

This paper considers the problem of risk sharing, where a coalition of homogeneous agents, each bearing a random cost, aggregates their costs and shares the value-at-risk of such a risky position. Due to limited distributional information in practice, the joint distribution of agents’ random costs is difficult to acquire. The coalition, being aware of the … Read more