Robust Shortest Path Problems with Two Uncertain Multiplicative Cost Coefficients

We consider a robust shortest path problem when the cost coefficient is the product of two uncertain factors. We first show that the robust problem can be solved in polynomial time by a dual variable enumeration with shortest path problems as subproblems. We also propose a path enumeration approach using a $K$-shortest paths finding algorithm … Read more

Adjustable Robust Parameter Design with Unknown Distributions

This article presents a novel combination of robust optimization developed in mathematical programming, and robust parameter design developed in statistical quality control. Robust parameter design uses metamodels estimated from experiments with both controllable and environmental inputs (factors). These experiments may be performed with either real or simulated systems; we focus on simulation experiments. For the … Read more

Gamma-Robust Facility Relocation Problem

In this paper, we consider relocating facilities, where we have demand changes in the network. Relocations are performed by closing some of the existing facilities from low demand areas and opening new ones in newly emerging areas. However, the actual changes of demand are not known in advance. Therefore, di erent scenarios with known probabilities are … Read more

Robust combinatorial optimization with cost uncertainty

We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates … Read more

Distributionally Robust Convex Optimization

Distributionally robust optimization is a paradigm for decision-making under uncertainty where the uncertain problem data is governed by a probability distribution that is itself subject to uncertainty. The distribution is then assumed to belong to an ambiguity set comprising all distributions that are compatible with the decision maker’s prior information. In this paper, we propose … Read more

Robust Optimization under Multi-band Uncertainty – Part I: Theory

The classical single-band uncertainty model introduced by Bertsimas and Sim has represented a breakthrough in the development of tractable robust counterparts of Linear Programs. However, adopting a single deviation band may be too limitative in practice: in many real-world problems, observed deviations indeed present asymmetric distributions over asymmetric ranges, so that getting a higher modeling … Read more

Robust Least Square Semidefinite Programming with Applications to Correlation Stress Testing

In this paper, we consider a least square semidefinite programming problem under ellipsoidal data uncertainty. We show that the robustification of this uncertain problem can be reformulated as a semidefinite linear programming problem with an additional second-order cone constraint. We then provide an explicit quantitative sensitivity analysis on how the solution under the robustification depends … Read more

Reliable p-median facility location problem: two-stage robust models and algorithms

In this paper, we propose a set of two-stage robust optimization models to design reliable p-median facility location networks subject to disruptions. A customized column-and- constraint generation approach is implemented and shown to be more effective than Benders cutting plane method. Numerical experiments are performed on real data and management insights on system design are … Read more

Robust Metric Inequalities for the Γ-Robust Network Loading Problem

In this paper, we consider the network loading problem under demand uncertainties with static routing, i.e, a single routing scheme based on the fraction of the demands has to be determined. We generalize the class of metric inequalities to the Γ-robust setting and show that they yield a formulation in the capacity space. We describe … Read more

Exact Solution of the Robust Knapsack Problem

We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight di ffers from the expected one. For this problem, we provide a dynamic programming algorithm … Read more