Randomized Robust Price Optimization

The robust multi-product pricing problem is to determine the prices of a collection of products so as to maximize the worst-case revenue, where the worst case is taken over an uncertainty set of demand models that the firm expects could be realized in practice. A tacit assumption in this approach is that the pricing decision … Read more

Mixed-Integer Programming for a Class of Robust Submodular Maximization Problems

\(\) We consider robust submodular maximization problems (RSMs), where given a set of \(m\) monotone submodular objective functions, the robustness is with respect to the worst-case (scaled) objective function. The model we consider generalizes two variants of robust submodular maximization problems in the literature, depending on the choice of the scaling vector. On one hand, by … Read more

Nonlinear Distributionally Robust Optimization

This article focuses on a class of distributionally robust optimization (DRO) problems where, unlike the growing body of the literature, the objective function is potentially non-linear in the distribution. Existing methods to optimize nonlinear functions in probability space use the Frechet derivatives, which present both theoretical and computational challenges. Motivated by this, we propose an … Read more

From the uncertainty set to the solution and back: the two stage case

Robust optimization approaches compute solutions resilient to data uncertainty, represented by a given uncertainty set. Instead, the problem of computing the largest uncertainty set that a given solution can support was, so far, quite neglected and the only results refer to the single stage framework. For that setting, it was proved that this problem can … Read more

Robust optimization: from the uncertainty set to the solution and back

So far, robust optimization have focused on computing solutions resilient to data uncertainty, given an uncertainty set representing the possible realizations of this uncertainty. Here, instead, we are interested in answering the following question: once a solution of a problem is given, which is the largest uncertainty set that this solution can support? We address … Read more

Distributionally Robust Linear Quadratic Control

Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is studied in various fields such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear dynamics and imperfect observations, subject to additive noise, with the goal of minimizing a quadratic cost function for the state and control variables. In this work, … Read more

Safely Learning Dynamical Systems

\(\) A fundamental challenge in learning an unknown dynamical system is to reduce model uncertainty by making measurements while maintaining safety. In this work, we formulate a mathematical definition of what it means to safely learn a dynamical system by sequentially deciding where to initialize the next trajectory. In our framework, the state of the … Read more

A Moment-SOS Hierarchy for Robust Polynomial Matrix Inequality Optimization with SOS-Convexity

We study a class of polynomial optimization problems with a robust polynomial matrix inequality constraint for which the uncertainty set is defined also by a polynomial matrix inequality (including robust polynomial semidefinite programs as a special case). Under certain SOS-convexity assumptions, we construct a hierarchy of moment-SOS relaxations for this problem to obtain convergent upper … Read more

Robust optimal design of a tree-based water distribution network with intermittent demand

This paper discusses the design of a tree-shaped water distribution system for small, dispersed rural communities. It revisits the topic that was discussed in [Babonneau et al., 2019] and is nowadays implemented in the field. It proposes a new approach to pipe selection based on robust optimization to account for the uncertainty inherent in intermittent … Read more

Finding Regions of Counterfactual Explanations via Robust Optimization

Counterfactual explanations play an important role in detecting bias and improving the explainability of data-driven classification models. A counterfactual explanation (CE) is a minimal perturbed data point for which the decision of the model changes. Most of the existing methods can only provide one CE, which may not be achievable for the user. In this … Read more