Network Flow Models for Robust Binary Optimization with Selective Adaptability

Adaptive robust optimization problems have received significant attention in recent years, but remain notoriously difficult to solve when recourse decisions are discrete in nature. In this paper, we propose new reformulation techniques for adaptive robust binary optimization (ARBO) problems with objective uncertainty. Without loss of generality, we focus on ARBO problems with “selective adaptability”, a … Read more

Adjustable Robust Nonlinear Network Design Without Controllable Elements under Load Scenario Uncertainties

We study network design problems for nonlinear and nonconvex flow models without controllable elements under load scenario uncertainties, i.e., under uncertain injections and withdrawals. To this end, we apply the concept of adjustable robust optimization to compute a network design that admits a feasible transport for all, possibly infinitely many, load scenarios within a given … Read more

Frequency regulation with storage: On losses and profits

Low-carbon societies will need to store vast amounts of electricity to balance intermittent generation from wind and solar energy, for example, through frequency regulation. Here, we derive an analytical solution to the decision-making problem of storage operators who sell frequency regulation power to grid operators and trade electricity on day-ahead markets. Mathematically, we treat future … Read more

Managing Distributional Ambiguity in Stochastic Optimization through a Statistical Upper Bound Framework

Stochastic optimization is often hampered by distributional ambiguity, where critical probability distributions are poorly characterized or unknown. Addressing this challenge, we introduce a new framework that targets the minimization of a statistical upper bound for the expected value of uncertain objectives, facilitating more statistically robust decision-making. Central to our approach is the Average Percentile Upper … Read more

Adjustable robust optimization for fleet sizing problem in closed-loop supply chains with simultaneous delivery and pickup

The Fleet Sizing Problem (FSP) stands as a critical challenge within the realm of logistics and supply chain management, particularly in the context of Closed-Loop Supply Chains (CLSC). The significance of addressing the FSP lies in its direct impact on operational costs, resource utilization, and environmental sustainability. By effectively optimizing fleet size, organizations can streamline … Read more

Fourth-order Marginal Moment Model: Reformulations and Applications

This paper investigates the bounds on the expectation of combinatorial optimization given moment information for each individual random variable. A popular approach to solving this problem, known as the marginal moment model (MMM), is to reformulate it as a semidefinite program (SDP). In this paper, we investigate the structure of MMM with up to fourth-order … Read more

Quadratic Optimization Through the Lens of Adjustable Robust Optimization

Quadratic optimization (QO) has been studied extensively in the literature due to its applicability in many practical problems. While practical, it is known that QO problems are generally NP-hard. So, researchers developed many approximation methods to find good solutions. In this paper, we analyze QO problems using robust optimization techniques. To this end, we first … Read more

Information Basis in Dynamic Robust Optimization

Dynamic robust optimization deals with sequential, multi-stage decisions in the face of uncertain, worst-case scenarios. To manage its complexity and the curse of dimensionality, decision rules simplify the search for an optimal policy. This paper explores a middle ground between two common decision rules: simple but imprecise constant policies, and accurate but less scalable affine … Read more

It’s All in the Mix: Wasserstein Classification and Regression with Mixed Features

Problem definition: A key challenge in supervised learning is data scarcity, which can cause prediction models to overfit to the training data and perform poorly out of sample. A contemporary approach to combat overfitting is offered by distributionally robust problem formulations that consider all data-generating distributions close to the empirical distribution derived from historical samples, … Read more

Robust Mask-Based Appointment Scheduling in Primary Care Practices

In most health care systems, a primary care physician (PCP) is both the first instance consulted by patients with medical concerns and the instance coordinating patients’ continued access to medical care. Due to the PCP’s pivotal role, we address challenges of a high-quality primary care service by interday appointment scheduling on a tactical decision level. Our … Read more