Incremental Network Design with Multi-commodity Flows

We introduce a novel incremental network design problem motivated by the expansion of hub capacities in package express service networks: the \textit{incremental network design problem with multi-commodity flows}. We are given an initial and a target service network design, defined by a set of nodes, arcs, and origin-destination demands (commodities), and we seek to find … Read more

Adjustable robust optimization with discrete uncertainty

In this paper, we study Adjustable Robust Optimization (ARO) problems with discrete uncertainty. Under a very general modeling framework, we show that such two-stage robust problems can be exactly reformulated as ARO problems with objective uncertainty only. This reformulation is valid with and without the fixed recourse assumption and is not limited to continuous wait-and-see … Read more

Hierarchically constrained blackbox optimization

In blackbox optimization, evaluation of the objective and constraint functions is time consuming. In some situations, constraint values may be evaluated independently or sequentially. The present work proposes and compares two strategies to define a hierarchical ordering of the constraints and to interrupt the evaluation process at a trial point when it is detected that … Read more

On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization

We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be optimized simultaneously under the … Read more

Freight-on-Transit for urban last-mile deliveries: A Strategic Planning Approach

We study a delivery strategy for last-mile deliveries in urban areas which combines freight transportation with mass mobility systems with the goal of creating synergies contrasting negative externalities caused by transportation. The idea is to use the residual capacity on public transport means for moving freights within the city. In particular, the system is such … Read more

Nonlinear conjugate gradient for smooth convex functions

The method of nonlinear conjugate gradients (NCG) is widely used in practice for unconstrained optimization, but it satisfies weak complexity bounds at best when applied to smooth convex functions. In contrast, Nesterov’s accelerated gradient (AG) method is optimal up to constant factors for this class. However, when specialized to quadratic function, conjugate gradient is optimal … Read more

Algebraic-based primal interior-point algorithms for stochastic infinity norm optimization

We study the two-stage stochastic infinity norm optimization problem with recourse. First, we study and analyze the algebraic structure of the infinity norm cone, and use its algebra to compute the derivatives of the barrier recourse functions. Then, we show that the barrier recourse functions and the composite barrier functions for this optimization problem are … Read more

Duality aspects in convex conic programming

In this paper we study strong duality aspects in convex conic programming over general convex cones. It is known that the duality in convex optimization is linked with specific theorems of alternatives. We formulate and prove strong alternatives to the existence of the relative interior point in the primal (dual) feasible set. We analyze the … Read more

Modeling Design and Control Problems Involving Neural Network Surrogates

We consider nonlinear optimization problems that involve surrogate models represented by neural net-works. We demonstrate first how to directly embed neural network evaluation into optimization models, highlight a difficulty with this approach that can prevent convergence, and then characterize stationarity of such models. We then present two alternative formulations of these problems in the specific … Read more

Stochastic Dual Dynamic Programming for Optimal Power Flow Problems under Uncertainty

We propose the first computationally tractable framework to solve multi-stage stochastic optimal power flow (OPF) problems in alternating current (AC) power systems. To this end, we use recent results on dual convex semi-definite programming (SDP) relaxations of OPF problems in order to adapt the stochastic dual dynamic programming (SDDP) algorithm for problems with a Markovian … Read more