Mixed Integer Bilevel Optimization with k-optimal Follower: A Hierarchy of Bounds

We consider mixed integer bilevel linear optimization problems in which the decision variables of the lower-level (follower’s) problem are all binary. We propose a general modeling and solution framework motivated by the practical reality that in a Stackelberg game, the follower does not always solve their optimization problem to optimality. They may instead implement a … Read more

Behavior of Limited Memory BFGS when Applied to Nonsmooth Functions and their Nesterov Smoothings

The motivation to study the behavior of limited-memory BFGS (L-BFGS) on nonsmooth optimization problems is based on two empirical observations: the widespread success of L-BFGS in solving large-scale smooth optimization problems, and the remarkable effectiveness of the full BFGS method in solving small to medium-sized nonsmooth optimization problems, based on using a gradient, not a … Read more

On the strong concavity of the dual function of an optimization problem

We provide three new proofs of the strong concavity of the dual function of some convex optimization problems. For problems with nonlinear constraints, we show that the the assumption of strong convexity of the objective cannot be weakened to convexity and that the assumption that the gradients of all constraints at the optimal solution are … Read more

Combination Chemotherapy Optimization

Chemotherapy is one of the primary modalities of cancer treatment. Chemotherapy drug administration is a complex problem that often requires expensive clinical trials to evaluate potential regimens. One way to alleviate this burden and better inform future trials is to build reliable models for drug administration. Previous chemotherapy optimization models have mainly relied on optimal … Read more

Riemannian Optimization on the Symplectic Stiefel Manifold

The symplectic Stiefel manifold, denoted by $\mathrm{Sp}(2p,2n)$, is the set of linear symplectic maps between the standard symplectic spaces $\mathbb{R}^{2p}$ and $\mathbb{R}^{2n}$. When $p=n$, it reduces to the well-known set of $2n\times 2n$ symplectic matrices. Optimization problems on $\mathrm{Sp}(2p,2n)$ find applications in various areas, such as optics, quantum physics, numerical linear algebra and model order … Read more

Regret Minimization and Separation in Multi-Bidder Multi-Item Auctions

We study a robust auction design problem with a minimax regret objective, where a seller seeks a mechanism for selling multiple items to multiple bidders with additive values. The seller knows that the bidders’ values range over a box uncertainty set but has no information on their probability distribution. The robust auction design model we … Read more

The ratio-cut polytope and K-means clustering

We introduce the ratio-cut polytope defined as the convex hull of ratio-cut vectors corresponding to all partitions of $n$ points in $\R^m$ into at most $K$ clusters. This polytope is closely related to the convex hull of the feasible region of a number of clustering problems such as K-means clustering and spectral clustering. We study … Read more

Robust Spectral Risk Optimization When Information on Risk Spectrum Is Incomplete

Spectral risk measure (SRM) is a weighted average of value at risk (VaR) where the weighting function (also known as risk spectrum or distortion function) characterizes the decision maker’s risk attitude. In this paper, we consider the case where the decision maker’s risk spectrum is ambiguous and introduce a robust SRM model based on the … Read more

Inexact Derivative-Free Optimization for Bilevel Learning

Variational regularization techniques are dominant in the field of mathematical imaging. A drawback of these techniques is that they are dependent on a number of parameters which have to be set by the user. A by now common strategy to resolve this issue is to learn these parameters from data. While mathematically appealing this strategy … Read more

Memory-efficient structured convex optimization via extreme point sampling

Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an n × n matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance … Read more