Exact Methods for the Traveling Salesman Problem with Drone

Efficiently handling last-mile deliveries becomes more and more important nowadays. Using drones to support classical vehicles allows improving delivery schedules as long as efficient solution methods to plan last-mile deliveries with drones are available. We study exact solution approaches for some variants of the traveling salesman problem with drone (TSP-D) in which a truck and … Read more

A Polynomial-time Algorithm with Tight Error Bounds for Single-period Unit Commitment Problem

This paper proposes a Lagrangian dual based polynomial-time approximation algorithm for solving the single-period unit commitment problem, which can be formulated as a mixed integer quadratic programming problem and proven to be NP-hard. Tight theoretical bounds for the absolute errors and relative errors of the approximate solutions generated by the proposed algorithm are provided. Computational … Read more

Adaptive Sampling Quasi-Newton Methods for Derivative-Free Stochastic Optimization

We consider stochastic zero-order optimization problems, which arise in settings from simulation optimization to reinforcement learning. We propose an adaptive sampling quasi-Newton method where we estimate the gradients of a stochastic function using finite differences within a common random number framework. We employ modified versions of a norm test and an inner product quasi-Newton test … Read more

Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs

A common assumption in the shop scheduling literature is that the processing order of the operations of each job is sequential; however, in practice there can be multiple connections and finish-to-start dependencies among the operations of each job. This paper studies flexible job shop scheduling problems with arbitrary precedence graphs. Rigorous mixed integer and constraint … Read more

Fully adaptive proximal extrapolated gradient method for monotone variational inequalities

The paper presents a fully adaptive proximal extrapolated gradient method for monotone variational inequalities. The proposed method uses fully non-monotonic and adaptive step sizes, that are computed using two previous iterates as an approximation of the locally Lipschitz constant without running a linesearch. Thus, it has almost the same low computational cost as classic proximal … Read more

On the Cluster-aware Supervised Learning (CluSL): Frameworks, Convergent Algorithms, and Applications

This paper proposes a cluster-aware supervised learning (CluSL) framework, which integrates the clustering analysis with supervised learning (SL). The objective of CluSL is to simultaneously find the best clusters of the data points and minimize the sum of loss functions within each cluster. This framework has many potential applications in healthcare, operations management, manufacturing, and … Read more

Coupled Learning Enabled Stochastic Programming with Endogenous Uncertainty

Predictive analytics, empowered by machine learning, is usually followed by decision-making problems in prescriptive analytics. We extend the above sequential prediction-optimization paradigm to a coupled scheme such that the prediction model can guide the decision problem to produce coordinated decisions yielding higher levels of performance. Speci fically, for stochastic programming (SP) models with latently decision-dependent uncertainty, … Read more

Adaptive Gradient Descent without Descent

We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the function except for the gradients. By following these rules, you get a method adaptive … Read more

Query Batching Optimization in Database Systems

Techniques based on sharing data and computation among queries have been an active research topic in database systems. While work in this area developed algorithms and systems that are shown to be effective, there is a lack of rigorous modeling and theoretical study for query processing and optimization. Query batching in database systems has strong … Read more

Customized transition towards smart homes: A fast framework for economic analyses

Smart homes allow the optimization of energy usage so that households can reduce electricity bills, or even make profits. By 2020, 20% of all households in Europe and 35% in North America will be expected to become smart homes. Although smart homes seem to be the future for homes, many customers have the perception that … Read more