On the equivalence of the method of conjugate gradients and quasi-Newton methods on quadratic problems

In this paper we state necessary and sufficient conditions for equivalence of the method of conjugate gradients and quasi-Newton methods on a quadratic problem. We show that the set of quasi-Newton schemes that generate parallel search directions to those of the method of conjugate gradients is strictly larger than the one-parameter Broyden family. In addition, … Read more

Discrete optimization methods to fit piecewise-affine models to data points

Fitting piecewise affine models to data points is a pervasive task in many scientific disciplines. In this work, we address the k- Piecewise Affine Model Fitting with Pairwise Linear Separability problem (k-PAMF-PLS) where, given a set of real points and the corresponding observations, we have to partition the real domain into k pairwise linearly separable … Read more

Complexity of Minimum Irreducible Infeasible Subsystem Covers for Flow Networks

For an infeasible network flow system with supplies and demands, we consider the problem of finding a minimum irreducible infeasible subsystem cover, i.e., a smallest set of constraints that must be dropped to obtain a feasible system. The special cases of covers which only contain flow balance constraints (node cover) or only flow bounds (arc … Read more

Parallelizing the dual revised simplex method

This paper introduces the design and implementation of two parallel dual simplex solvers for general large scale sparse linear programming problems. One approach, called PAMI, extends a relatively unknown pivoting strategy called suboptimization and exploits parallelism across multiple iterations. The other, called SIP, exploits purely single iteration parallelism by overlapping computational components when possible. Computational … Read more

Polynomial Root Radius Optimization with Affine Constraints

The root radius of a polynomial is the maximum of the moduli of its roots (zeros). We consider the following optimization problem: minimize the root radius over monic polynomials of degree $n$, with either real or complex coefficients, subject to $k$ consistent affine constraints on the coefficients. We show that there always exists an optimal … Read more

Extension and Implementation of Homogeneous Self-dual Methods for Symmetric Cones under Uncertainty

Homogeneous self-dual algorithms for stochastic semidefinite programs with finite event space has been proposed by Jin et al. in [12]. Alzalg [8], has adopted their work to derive homogeneous self-dual algorithms for stochastic second-order programs with finite event space. In this paper, we generalize these two results to derive homogeneous self-dual algorithms for stochastic programs … Read more

Calibration by Optimization Without Using Derivatives

Applications in engineering frequently require the adjustment of certain parameters. While the mathematical laws that determine these parameters often are well understood, due to time limitations in every day industrial life, it is typically not feasible to derive an explicit computational procedure for adjusting the parameters based on some given measurement data. This paper aims … Read more

Stochastic versus Robust Optimization for a Transportation Problem

In this paper we consider a transportation problem under uncertainty related to gypsum replenishment for a cement producer. The problem is to determine the number of vehicles to book at the beginning of each week to replenish gypsum at all the cement factories of the producer in order to minimize the total cost, given by … Read more

A Three-Operator Splitting Scheme and its Optimization Applications

Operator splitting schemes have been successfully used in computational sciences to reduce complex problems into a series of simpler subproblems. Since 1950s, these schemes have been widely used to solve problems in PDE and control. Recently, large-scale optimization problems in machine learning, signal processing, and imaging have created a resurgence of interest in operator-splitting based … Read more

Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes

We propose an equilibrium model that allows to analyze the long-run impact of the regulatory environment on transmission line expansion by the regulator and investment in generation capacity by private firms in liberalized electricity markets. The model incorporates investment decisions of the transmission operator and private firms in expectation of an energy-only market and cost-based … Read more