Application of the Strictly Contractive Peaceman-Rachford Splitting Method to Multi-block Separable Convex Programming

Recently, a strictly contractive Peaceman- Rachford splitting method (SC-PRSM) was proposed to solve a convex minimization model with linear constraints and a separable objective function which is the sum of two functions without coupled variables. We show by an example that the SC-PRSM cannot be directly extended to the case where the objective function is … Read more

A Second-Order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries

In this paper we are interested in the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. CS problems of this type are convex with non-smooth and non-separable regularization term, therefore a specialized solver is required. We propose a primal-dual Newton Conjugate Gradients (pdNCG) method. … Read more

Spectral estimates for unreduced symmetric KKT systems arising from Interior Point methods

We consider symmetrized KKT systems arising in the solution of convex quadratic programming problems in standard form by Interior Point methods. Their coefficient matrices usually have 3×3 block structure and, under suitable conditions on both the quadratic programming problem and the solution, they are nonsingular in the limit. We present new spectral estimates for these … Read more

Toward Scalable Stochastic Unit Commitment – Part 1: Load Scenario Generation

Unit commitment decisions made in the day-ahead market and during subsequent reliability assessments are critically based on forecasts of load. Traditional, deterministic unit commitment is based on point or expectation-based load forecasts. In contrast, stochastic unit commitment relies on multiple load scenarios, with associated probabilities, that in aggregate capture the range of likely load time-series. … Read more

Toward Scalable Stochastic Unit Commitment – Part 2: Solver Configuration and Performance Assessment

In this second portion of a two-part analysis of a scalable computational approach to stochastic unit commitment, we focus on solving stochastic mixed-integer programs in tractable run-times. Our solution technique is based on Rockafellar and Wets’ progressive hedging algorithm, a scenario-based decomposition strategy for solving stochastic programs. To achieve high-quality solutions in tractable run-times, we … Read more

A mixed integer programming approach for asset protection during escaped wildfires

Incident Management Teams (IMTs) are responsible for managing the response to wildfires. One of the IMT’s objectives is the protection of assets and infrastructure. In this paper we develop a mathematical model to assist IMTs in assigning resources to asset protection activities during escaped wildfires. We present a mixed integer programming model for resource allocation … Read more

AN INEQUALITY-CONSTRAINED SQP METHOD FOR EIGENVALUE OPTIMIZATION

We consider a problem in eigenvalue optimization, in particular find- ing a local minimizer of the spectral abscissa – the value of a parameter that results in the smallest magnitude of the largest real part of the spectrum of a matrix system. This is an important problem for the stabilization of control sys- tems. Many … Read more

Primal-dual regularized SQP and SQCQP type methods for convex programming and their complexity analysis

This paper presents and studies the iteration-complexity of two new inexact variants of Rockafellar’s proximal method of multipliers (PMM) for solving convex programming (CP) problems with a fi nite number of functional inequality constraints. In contrast to the first variant which solves convex quadratic programming (QP) subproblems at every iteration, the second one solves convex constrained … Read more

Coordinate shadows of semi-definite and Euclidean distance matrices

We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We characterize when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. … Read more

How Good Are Sparse Cutting-Planes?

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-\&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In order to understand this question better, given a polyope $P$ (e.g. the integer hull of … Read more