Extreme point inequalities and geometry of the rank sparsity ball

We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the l_1 norm of its entries — a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex … Read more

Subset Selection by Mallows’ Cp: A Mixed Integer Programming Approach

This paper concerns a method of selecting the best subset of explanatory variables for a linear regression model. Employing Mallows’ C_p as a goodness-of-fit measure, we formulate the subset selection problem as a mixed integer quadratic programming problem. Computational results demonstrate that our method provides the best subset of variables in a few seconds when … Read more

From seven to eleven: completely positive matrices with high cp-rank

We study $n\times n$ completely positive matrices $M$ on the boundary of the completely positive cone, namely those orthogonal to a copositive matrix $S$ which generates a quadratic form with finitely many zeroes in the standard simplex. Constructing particular instances of $S$, we are able to construct counterexamples to the famous Drew-Johnson-Loewy conjecture (1994) for … Read more

An improved and simplified full-Newton step O(n) infeasible interior-point method for Linear Optimization

We present an improved version of an infeasible interior-point method for linear optimization published in 2006. In the earlier version each iteration consisted of one so-called infeasibility step and a few – at most three – centering steps. In this paper each iteration consists of only a infeasibility step, whereas the iteration bound improves the … Read more

Characterization of properly optimal elements with variable ordering structures

In vector optimization with a variable ordering structure the partial ordering defined by a convex cone is replaced by a whole family of convex cones, one associated with each element of the space. In recent publications it was started to develop a comprehensive theory for these vector optimization problems. Thereby also notions of proper efficiency … Read more

Cutting Planes for RLT Relaxations of Mixed 0-1 Polynomial Programs

The Reformulation-Linearization Technique (RLT), due to Sherali and Adams, can be used to construct hierarchies of linear programming relaxations of mixed 0-1 polynomial programs. As one moves up the hierarchy, the relaxations grow stronger, but the number of variables increases exponentially. We present a procedure that generates cutting planes at any given level of the … Read more

Optimal Control of Plug-In Hybrid Electric Vehicles with Market Impact and Risk Attitude

In this paper, we develop optimal electricity storage control policies to manage charging and discharging activities for plug-in hybrid electric vehicles for the benefit of an energy market participant. We first develop models for both risk-neutral and risk-averse aggregators to participate only in a real-time market. The proposed models capture the impact of the charging … Read more

Spectral Operators of Matrices

The class of matrix optimization problems (MOPs) has been recognized in recent years to be a powerful tool by researchers far beyond the optimization community to model many important applications involving structured low rank matrices. This trend can be credited to some extent to the exciting developments in the emerging field of compressed sensing. The … Read more

Adjustable robust optimization with decision rules based on inexact revealed data

Adjustable robust optimization (ARO) is a technique to solve dynamic (multistage) optimization problems. In ARO, the decision in each stage is a function of the information accumulated from the previous periods on the values of the uncertain parameters. This information, however, is often inaccurate; there is much evidence in the information management literature that even … Read more

Lagrangian-Conic Relaxations, Part II: Applications to Polynomial Optimization Problems

We present the moment cone (MC) relaxation and a hierarchy of sparse Lagrangian-SDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the … Read more